These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 11382816)

  • 61. AtMBD8 is involved in control of flowering time in the C24 ecotype of Arabidopsis thaliana.
    Stangeland B; Rosenhave EM; Winge P; Berg A; Amundsen SS; Karabeg M; Mandal A; Bones AM; Grini PE; Aalen RB
    Physiol Plant; 2009 May; 136(1):110-26. PubMed ID: 19374717
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Functional Characterization of Phalaenopsis aphrodite Flowering Genes PaFT1 and PaFD.
    Jang S; Choi SC; Li HY; An G; Schmelzer E
    PLoS One; 2015; 10(8):e0134987. PubMed ID: 26317412
    [TBL] [Abstract][Full Text] [Related]  

  • 63. HASTY: a gene that regulates the timing of shoot maturation in Arabidopsis thaliana.
    Telfer A; Poethig RS
    Development; 1998 May; 125(10):1889-98. PubMed ID: 9550721
    [TBL] [Abstract][Full Text] [Related]  

  • 64. EMF1 and PRC2 cooperate to repress key regulators of Arabidopsis development.
    Kim SY; Lee J; Eshed-Williams L; Zilberman D; Sung ZR
    PLoS Genet; 2012; 8(3):e1002512. PubMed ID: 22457632
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The quest for florigen: a review of recent progress.
    Corbesier L; Coupland G
    J Exp Bot; 2006; 57(13):3395-403. PubMed ID: 17030536
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The ULTRAPETALA1 gene functions early in Arabidopsis development to restrict shoot apical meristem activity and acts through WUSCHEL to regulate floral meristem determinacy.
    Carles CC; Lertpiriyapong K; Reville K; Fletcher JC
    Genetics; 2004 Aug; 167(4):1893-903. PubMed ID: 15342527
    [TBL] [Abstract][Full Text] [Related]  

  • 67. [Arabidopsis thaliana (L.) Heynh. as a model object for studying genetic control of morphogenesis].
    Ezhova TA
    Genetika; 1999 Nov; 35(11):1522-37. PubMed ID: 10624575
    [TBL] [Abstract][Full Text] [Related]  

  • 68. DNA-binding protein phosphatase AtDBP1 acts as a promoter of flowering in Arabidopsis.
    Zhai H; Ning W; Wu H; Zhang X; Lü S; Xia Z
    Planta; 2016 Mar; 243(3):623-33. PubMed ID: 26586176
    [TBL] [Abstract][Full Text] [Related]  

  • 69. FE, a phloem-specific Myb-related protein, promotes flowering through transcriptional activation of FLOWERING LOCUS T and FLOWERING LOCUS T INTERACTING PROTEIN 1.
    Abe M; Kaya H; Watanabe-Taneda A; Shibuta M; Yamaguchi A; Sakamoto T; Kurata T; Ausín I; Araki T; Alonso-Blanco C
    Plant J; 2015 Sep; 83(6):1059-68. PubMed ID: 26239308
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A quantitative and dynamic model of the Arabidopsis flowering time gene regulatory network.
    Leal Valentim F; Mourik Sv; Posé D; Kim MC; Schmid M; van Ham RC; Busscher M; Sanchez-Perez GF; Molenaar J; Angenent GC; Immink RG; van Dijk AD
    PLoS One; 2015; 10(2):e0116973. PubMed ID: 25719734
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Integrating long-day flowering signals: a LEAFY binding site is essential for proper photoperiodic activation of APETALA1.
    Benlloch R; Kim MC; Sayou C; Thévenon E; Parcy F; Nilsson O
    Plant J; 2011 Sep; 67(6):1094-102. PubMed ID: 21623976
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Identification, Functional Study, and Promoter Analysis of HbMFT1, a Homolog of MFT from Rubber Tree (Hevea brasiliensis).
    Bi Z; Li X; Huang H; Hua Y
    Int J Mol Sci; 2016 Mar; 17(3):247. PubMed ID: 26950112
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Changing the spatial pattern of TFL1 expression reveals its key role in the shoot meristem in controlling Arabidopsis flowering architecture.
    Baumann K; Venail J; Berbel A; Domenech MJ; Money T; Conti L; Hanzawa Y; Madueno F; Bradley D
    J Exp Bot; 2015 Aug; 66(15):4769-80. PubMed ID: 26019254
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Regulation and function of SOC1, a flowering pathway integrator.
    Lee J; Lee I
    J Exp Bot; 2010 May; 61(9):2247-54. PubMed ID: 20413527
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis.
    Liu C; Chen H; Er HL; Soo HM; Kumar PP; Han JH; Liou YC; Yu H
    Development; 2008 Apr; 135(8):1481-91. PubMed ID: 18339670
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Integration of spatial and temporal information during floral induction in Arabidopsis.
    Wigge PA; Kim MC; Jaeger KE; Busch W; Schmid M; Lohmann JU; Weigel D
    Science; 2005 Aug; 309(5737):1056-9. PubMed ID: 16099980
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effects of sugar on vegetative development and floral transition in Arabidopsis.
    Ohto M; Onai K; Furukawa Y; Aoki E; Araki T; Nakamura K
    Plant Physiol; 2001 Sep; 127(1):252-61. PubMed ID: 11553753
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Interaction of FLC and late-flowering mutations in Arabidopsis thaliana.
    Sanda SL; Amasino RM
    Mol Gen Genet; 1996 Apr; 251(1):69-74. PubMed ID: 8628249
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana.
    Koornneef M; Hanhart CJ; van der Veen JH
    Mol Gen Genet; 1991 Sep; 229(1):57-66. PubMed ID: 1896021
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Differential expression of flowering genes in Arabidopsis thaliana under chronic and acute ionizing radiation.
    Kryvokhyzha MV; Krutovsky KV; Rashydov NM
    Int J Radiat Biol; 2019 May; 95(5):626-634. PubMed ID: 30570374
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.