BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 11382913)

  • 1. State-dependency of neuronal slow dynamics during sleep observed in cat lateral geniculate nucleus.
    Nakamura K; Yamamoto M; Takahashi K; Nakao M; Mizutani Y; Katayama N; Kodama T
    Sleep Res Online; 2000; 3(4):147-54. PubMed ID: 11382913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potentiation of ketamine effects on the spiking activity in the lateral geniculate nucleus by rapid eye movement (REM) sleep deprivation.
    Susic V
    Arch Int Physiol Biochim; 1976 Apr; 84(2):229-34. PubMed ID: 71026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of hypnogenic brain areas on wakefulness- and rapid-eye-movement sleep-related neurons in the brainstem of freely moving cats.
    Mallick BN; Thankachan S; Islam F
    J Neurosci Res; 2004 Jan; 75(1):133-42. PubMed ID: 14689456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ponto-geniculo-occipital-wave suppression amplifies lateral geniculate nucleus cell-size changes in monocularly deprived kittens.
    Shaffery JP; Roffwarg HP; Speciale SG; Marks GA
    Brain Res Dev Brain Res; 1999 Apr; 114(1):109-19. PubMed ID: 10209248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Asymmetry of the electroencephalographic manifestations of REM and slow-wave sleep in the cat].
    Garaev MA; Liubimov NN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1987; 37(3):428-38. PubMed ID: 3630376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical wave amplitude and eye movement direction are correlated in REM sleep but not in waking.
    Monaco AP; Baghdoyan HA; Nelson JP; Hobson JA
    Arch Ital Biol; 1984 Sep; 122(3):213-23. PubMed ID: 6517651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavioral state-related changes of extracellular serotonin concentration in the pedunculopontine tegmental nucleus: a microdialysis study in freely moving animals.
    Strecker RE; Thakkar MM; Porkka-Heiskanen T; Dauphin LJ; Bjørkum AA; McCarley RW
    Sleep Res Online; 1999; 2(2):21-7. PubMed ID: 11421239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preoptic area unit activity during sleep and wakefulness in the cat.
    Kaitin KI
    Exp Neurol; 1984 Feb; 83(2):347-57. PubMed ID: 6692872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lateral geniculate nucleus unitary discharge in sleep and waking: state- and rate-specific aspects.
    McCarley RW; Benoit O; Barrionuevo G
    J Neurophysiol; 1983 Oct; 50(4):798-818. PubMed ID: 6631464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of REM sleep to Fos and FRA expression in the vestibular nuclei of rat leading to vestibular adaptation during the STS-90 Neurolab Mission.
    Pompeiano O
    Arch Ital Biol; 2007 Jan; 145(1):55-85. PubMed ID: 17274184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative power contributions of unit discharges simultaneously recorded in the mesencephalic reticular formation.
    Kodama T; Honda Y; Nakao M; Sato S; Yamamoto M
    Psychiatry Clin Neurosci; 2000 Jun; 54(3):265-7. PubMed ID: 11186070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The restructuring of the neuronal activity of the lateral hypothalamic preoptic area during the development of sleep].
    Suntsova NV; Burikov AA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1995; 45(5):948-56. PubMed ID: 8560941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Inactivating depolarization of relay neurons in the lateral geniculate body during paradoxical sleep in the cat].
    Fourment A; Hirsch J; Marc ME
    C R Seances Acad Sci III; 1981 Sep; 293(2):165-70. PubMed ID: 6794866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. State-dependent changes in high-frequency oscillations recorded in the rat nucleus accumbens.
    Hunt MJ; Matulewicz P; Gottesmann C; Kasicki S
    Neuroscience; 2009 Dec; 164(2):380-6. PubMed ID: 19716859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of potassium ion activity in cat hippocampus during REM sleep.
    Satoh T; Yokota T; Kitayama S
    Sleep; 1991 Feb; 14(1):2-4. PubMed ID: 1811315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacological and model-based interpretation of neuronal dynamics transitions during sleep-waking cycle.
    Yamamoto M; Nakao M; Mizutani Y; Takahashi T; Watanabe K; Arai H; Sasaki N
    Methods Inf Med; 1994 Mar; 33(1):125-8. PubMed ID: 8177062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinearities within the cat LGN cell receptive fields in simulated network with recurrent inhibition.
    Musiałl P; Panecki S; Gerstein GL; Wróbel A
    Acta Neurobiol Exp (Wars); 1996; 56(4):927-42. PubMed ID: 9033128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slow wave and REM sleep mentation.
    Cicogna P; Natale V; Occhionero M; Bosinelli M
    Sleep Res Online; 2000; 3(2):67-72. PubMed ID: 11382903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-night EEG power spectral analysis of the cyclic alternating pattern components in young adult subjects.
    Ferri R; Bruni O; Miano S; Plazzi G; Terzano MG
    Clin Neurophysiol; 2005 Oct; 116(10):2429-40. PubMed ID: 16112901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhythmic hippocampal slow oscillation characterizes REM sleep in humans.
    Bódizs R; Kántor S; Szabó G; Szûcs A; Erõss L; Halász P
    Hippocampus; 2001; 11(6):747-53. PubMed ID: 11811669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.