BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 11383136)

  • 1. Sensitized photooxygenation and peroxidase-catalyzed inactivation of xanthine oxidase--evidence of cysteine damage by singlet oxygen.
    Justo GZ; Camargo FA; Haun M; Faljoni-Alário A; Durán N
    Physiol Chem Phys Med NMR; 2000; 32(2):145-54. PubMed ID: 11383136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mammalian xanthine oxidoreductase - mechanism of transition from xanthine dehydrogenase to xanthine oxidase.
    Nishino T; Okamoto K; Eger BT; Pai EF; Nishino T
    FEBS J; 2008 Jul; 275(13):3278-89. PubMed ID: 18513323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NADH oxidase activity of rat liver xanthine dehydrogenase and xanthine oxidase-contribution for damage mechanisms.
    Maia L; Vala A; Mira L
    Free Radic Res; 2005 Sep; 39(9):979-86. PubMed ID: 16087479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper(II) as an efficient scavenger of singlet molecular oxygen.
    Joshi PC
    Indian J Biochem Biophys; 1998 Aug; 35(4):208-15. PubMed ID: 9854900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron transfer and singlet oxygen mechanisms in the photooxygenation of dibutyl sulfide and thioanisole in MeCN sensitized by N-methylquinolinium tetrafluoborate and 9,10-dicyanoanthracene. The probable involvement of a thiadioxirane intermediate in electron transfer photooxygenations.
    Baciocchi E; Del Giacco T; Elisei F; Gerini MF; Guerra M; Lapi A; Liberali P
    J Am Chem Soc; 2003 Dec; 125(52):16444-54. PubMed ID: 14692788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The aggregation in human lens proteins blocks the scavenging of UVA-generated singlet oxygen by ascorbic acid and glutathione.
    Linetsky M; Ranson N; Ortwerth BJ
    Arch Biochem Biophys; 1998 Mar; 351(2):180-8. PubMed ID: 9515055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of xanthine oxidase inhibition activity of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method.
    Ozyürek M; Bektaşoğlu B; Güçlü K; Apak R
    Anal Chim Acta; 2009 Mar; 636(1):42-50. PubMed ID: 19231354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Catalytic spectrophotometric quantitation for hypoxanthine by conjugating xanthine oxidase with horseradish peroxidase].
    Li ZQ; Xu XP; Wang W
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Sep; 28(9):2169-72. PubMed ID: 19093586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two mutations convert mammalian xanthine oxidoreductase to highly superoxide-productive xanthine oxidase.
    Asai R; Nishino T; Matsumura T; Okamoto K; Igarashi K; Pai EF; Nishino T
    J Biochem; 2007 Apr; 141(4):525-34. PubMed ID: 17301076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutathione peroxidase, glutathione-S-transferase, catalase, xanthine oxidase, Cu-Zn superoxide dismutase activities, total glutathione, nitric oxide, and malondialdehyde levels in erythrocytes of patients with small cell and non-small cell lung cancer.
    Kaynar H; Meral M; Turhan H; Keles M; Celik G; Akcay F
    Cancer Lett; 2005 Sep; 227(2):133-9. PubMed ID: 16112416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiol oxidation induced by oxidative action of adriamycin.
    Muraoka S; Miura T
    Free Radic Res; 2004 Sep; 38(9):963-8. PubMed ID: 15621714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human red blood cell membrane oxidase and horseradish peroxidase cleavage of folic acid: evidence for formation of singlet oxygen.
    Innocentini LH; Durán N
    Braz J Med Biol Res; 1982 Apr; 15(1):11-6. PubMed ID: 6897521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presence of epidermal allantoin further supports oxidative stress in vitiligo.
    Shalbaf M; Gibbons NC; Wood JM; Maitland DJ; Rokos H; Elwary SM; Marles LK; Schallreuter KU
    Exp Dermatol; 2008 Sep; 17(9):761-70. PubMed ID: 18328088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of riboflavin-mediated photo-oxidation of glucose 6-phosphate dehydrogenase by urocanic acid.
    Silva E; Herrera L; Edwards AM; de la Fuente J; Lissi E
    Photochem Photobiol; 2005; 81(1):206-11. PubMed ID: 15504084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of reactive oxygen species in blood platelets.
    Wachowicz B; Olas B; Zbikowska HM; Buczyński A
    Platelets; 2002 May; 13(3):175-82. PubMed ID: 12180500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of L-arginine in ibuprofen-induced oxidative stress and neutrophil infiltration in gastric mucosa.
    Jiménez MD; Martín MJ; Alarcón de la Lastra C; Bruseghini L; Esteras A; Herrerías JM; Motilva V
    Free Radic Res; 2004 Sep; 38(9):903-11. PubMed ID: 15621707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Therapeutic strategies by modulating oxygen stress in cancer and inflammation.
    Fang J; Seki T; Maeda H
    Adv Drug Deliv Rev; 2009 Apr; 61(4):290-302. PubMed ID: 19249331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-activity relationship of C6-C3 phenylpropanoids on xanthine oxidase-inhibiting and free radical-scavenging activities.
    Chang YC; Lee FW; Chen CS; Huang ST; Tsai SH; Huang SH; Lin CM
    Free Radic Biol Med; 2007 Dec; 43(11):1541-51. PubMed ID: 17964425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sites and mechanisms of aconitase inactivation by peroxynitrite: modulation by citrate and glutathione.
    Han D; Canali R; Garcia J; Aguilera R; Gallaher TK; Cadenas E
    Biochemistry; 2005 Sep; 44(36):11986-96. PubMed ID: 16142896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of oligosaccharides by reactive oxygen species decreases sialyl lewis x-mediated cell adhesion.
    Eguchi H; Ikeda Y; Ookawara T; Koyota S; Fujiwara N; Honke K; Wang PG; Taniguchi N; Suzuki K
    Glycobiology; 2005 Nov; 15(11):1094-101. PubMed ID: 16000697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.