These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 11383552)
1. Early suppression of striatal cyclic GMP may predetermine the induction and severity of chronic haloperidol-induced vacous chewing movements. Bester AM; Harvey BH Metab Brain Dis; 2000 Dec; 15(4):275-85. PubMed ID: 11383552 [TBL] [Abstract][Full Text] [Related]
2. Withdrawal-associated changes in peripheral nitrogen oxides and striatal cyclic GMP after chronic haloperidol treatment. Harvey BH; Bester A Behav Brain Res; 2000 Jun; 111(1-2):203-11. PubMed ID: 10840145 [TBL] [Abstract][Full Text] [Related]
3. Haloperidol-induced dyskinesia is associated with striatal NO synthase suppression: reversal with olanzapine. Nel A; Harvey BH Behav Pharmacol; 2003 May; 14(3):251-5. PubMed ID: 12799528 [TBL] [Abstract][Full Text] [Related]
4. Role of aging and striatal nitric oxide synthase activity in an animal model of tardive dyskinesia. Harvey BH; Nel A Brain Res Bull; 2003 Aug; 61(4):407-16. PubMed ID: 12909284 [TBL] [Abstract][Full Text] [Related]
5. Oral Dyskinesias and striatal lesions in rats after long-term co-treatment with haloperidol and 3-nitropropionic acid. Andreassen OA; Ferrante RJ; Beal MF; Jørgensen HA Neuroscience; 1998 Dec; 87(3):639-48. PubMed ID: 9758230 [TBL] [Abstract][Full Text] [Related]
6. Chronic haloperidol-induced alterations in pallidal GABA and striatal D(1)-mediated dopamine turnover as measured by dual probe microdialysis in rats. Grimm JW; See RE Neuroscience; 2000; 100(3):507-14. PubMed ID: 11098113 [TBL] [Abstract][Full Text] [Related]
7. Nitric oxide synthase inhibitors cause motor deficits in mice. Araki T; Mizutani H; Matsubara M; Imai Y; Mizugaki M; Itoyama Y Eur Neuropsychopharmacol; 2001 Apr; 11(2):125-33. PubMed ID: 11313158 [TBL] [Abstract][Full Text] [Related]
8. Electron spin resonance spectroscopy reveals alpha-phenyl-N-tert-butylnitrone spin-traps free radicals in rat striatum and prevents haloperidol-induced vacuous chewing movements in the rat model of human tardive dyskinesia. Rogoza RM; Fairfax DF; Henry P; N-Marandi S; Khan RF; Gupta SK; Mishra RK Synapse; 2004 Dec; 54(3):156-63. PubMed ID: 15452862 [TBL] [Abstract][Full Text] [Related]
9. Memantine attenuates the increase in striatal preproenkephalin mRNA expression and development of haloperidol-induced persistent oral dyskinesias in rats. Andreassen OA; Waage J; Finsen B; Jørgensen HA Brain Res; 2003 Dec; 994(2):188-92. PubMed ID: 14642644 [TBL] [Abstract][Full Text] [Related]
10. Pharmacological and neurochemical differences between acute and tardive vacuous chewing movements induced by haloperidol. Egan MF; Hurd Y; Ferguson J; Bachus SE; Hamid EH; Hyde TM Psychopharmacology (Berl); 1996 Oct; 127(4):337-45. PubMed ID: 8923569 [TBL] [Abstract][Full Text] [Related]
11. Alpha-phenyl-N-tert-butylnitrone prevents oxidative stress in a haloperidol-induced animal model of tardive dyskinesia: investigating the behavioural and biochemical changes. Daya RP; Tan ML; Sookram CD; Skoblenick K; Mishra RK Brain Res; 2011 Sep; 1412():28-36. PubMed ID: 21816389 [TBL] [Abstract][Full Text] [Related]
12. Comparative dopaminergic and muscarinic antagonist activity of clozapine and haloperidol. Sethy VH; Ellerbrock BR; Wu H Life Sci; 1996; 58(7):585-90. PubMed ID: 8632711 [TBL] [Abstract][Full Text] [Related]
13. Elevated neuronal nitric oxide synthase expression in chronic haloperidol-treated rats. Lau YS; Petroske E; Meredith GE; Wang JQ Neuropharmacology; 2003 Dec; 45(7):986-94. PubMed ID: 14573391 [TBL] [Abstract][Full Text] [Related]
14. Quantitative autoradiography of striatal dopamine D1, D2 and re-uptake sites in rats with vacuous chewing movements. Knable MB; Hyde TM; Egan MF; Tosayali M; Wyatt RJ; Kleinman JE Brain Res; 1994 May; 646(2):217-22. PubMed ID: 8069667 [TBL] [Abstract][Full Text] [Related]
15. Protective effect of Curcumin, the active principle of turmeric (Curcuma longa) in haloperidol-induced orofacial dyskinesia and associated behavioural, biochemical and neurochemical changes in rat brain. Bishnoi M; Chopra K; Kulkarni SK Pharmacol Biochem Behav; 2008 Feb; 88(4):511-22. PubMed ID: 18022680 [TBL] [Abstract][Full Text] [Related]
16. Differential striatal levels of TNF-alpha, NFkappaB p65 subunit and dopamine with chronic typical and atypical neuroleptic treatment: role in orofacial dyskinesia. Bishnoi M; Chopra K; Kulkarni SK Prog Neuropsychopharmacol Biol Psychiatry; 2008 Aug; 32(6):1473-8. PubMed ID: 18554768 [TBL] [Abstract][Full Text] [Related]
17. Antidepressant effect of pramipexole in mice forced swimming test: A cross talk between dopamine receptor and NMDA/nitric oxide/cGMP pathway. Ostadhadi S; Imran Khan M; Norouzi-Javidan A; Dehpour AR Biomed Pharmacother; 2016 Jul; 81():295-304. PubMed ID: 27261607 [TBL] [Abstract][Full Text] [Related]
18. Cannabidiol prevents haloperidol-induced vacuos chewing movements and inflammatory changes in mice via PPARγ receptors. Sonego AB; Prado DS; Vale GT; Sepulveda-Diaz JE; Cunha TM; Tirapelli CR; Del Bel EA; Raisman-Vozari R; Guimarães FS Brain Behav Immun; 2018 Nov; 74():241-251. PubMed ID: 30217539 [TBL] [Abstract][Full Text] [Related]
19. Kinetics of nitric oxide-cyclic GMP signalling in CNS cells and its possible regulation by cyclic GMP. Wykes V; Bellamy TC; Garthwaite J J Neurochem; 2002 Oct; 83(1):37-47. PubMed ID: 12358727 [TBL] [Abstract][Full Text] [Related]
20. Assessment of striatal extracellular dopamine and dopamine metabolites by microdialysis in haloperidol-treated rats exhibiting oral dyskinesia. See RE Neuropsychopharmacology; 1993 Sep; 9(2):101-9. PubMed ID: 8216693 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]