BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 11383623)

  • 1. Synthesis of styrenes through the biocatalytic decarboxylation of trans-cinnamic acids by plant cell cultures.
    Takemoto M; Achiwa K
    Chem Pharm Bull (Tokyo); 2001 May; 49(5):639-41. PubMed ID: 11383623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient synthesis of hydroxystyrenes via biocatalytic decarboxylation/deacetylation of substituted cinnamic acids by newly isolated Pantoea agglomerans strains.
    Sharma UK; Sharma N; Salwan R; Kumar R; Kasana RC; Sinha AK
    J Sci Food Agric; 2012 Feb; 92(3):610-7. PubMed ID: 21919002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regioselective enzymatic carboxylation of phenols and hydroxystyrene derivatives.
    Wuensch C; Glueck SM; Gross J; Koszelewski D; Schober M; Faber K
    Org Lett; 2012 Apr; 14(8):1974-7. PubMed ID: 22471935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the structural requirements of inducers and substrates for decarboxylation of weak acid preservatives by the food spoilage mould Aspergillus niger.
    Stratford M; Plumridge A; Pleasants MW; Novodvorska M; Baker-Glenn CA; Pattenden G; Archer DB
    Int J Food Microbiol; 2012 Jul; 157(3):375-83. PubMed ID: 22726726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae.
    Mukai N; Masaki K; Fujii T; Kawamukai M; Iefuji H
    J Biosci Bioeng; 2010 Jun; 109(6):564-9. PubMed ID: 20471595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of a ferulic acid decarboxylase from Pseudomonas fluorescens.
    Huang Z; Dostal L; Rosazza JP
    J Bacteriol; 1994 Oct; 176(19):5912-8. PubMed ID: 7928951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxylation and Glycosylation of Phenylpropanoids by Cultured Cells of Phytolacca americana.
    Shimoda K; Kubota N; Uesugi D; Tanigawa M; Hamada H
    Nat Prod Commun; 2016 Feb; 11(2):197-8. PubMed ID: 27032200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Styrene formation by the decomposition by Pichia carsonii of trans-cinnamic acid added to a ground fish product.
    Shimada K; Kimura E; Yasui Y; Tanaka H; Matsushita S; Hagihara H; Nagakura M; Kawahisa M
    Appl Environ Microbiol; 1992 May; 58(5):1577-82. PubMed ID: 1622227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of the catalytic activity of ferulic acid decarboxylase from Enterobacter sp. Px6-4 through random and site-directed mutagenesis.
    Lee H; Park J; Jung C; Han D; Seo J; Ahn JH; Chong Y; Hur HG
    Appl Microbiol Biotechnol; 2015 Nov; 99(22):9473-81. PubMed ID: 26059194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of 4-vinylguaiacol through a novel high-affinity ferulic acid decarboxylase to obtain smoke flavours without carcinogenic contaminants.
    Detering T; Mundry K; Berger RG
    PLoS One; 2020; 15(12):e0244290. PubMed ID: 33347481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereochemistry of decarboxylation of trans-4-hydroxycinnamic acid by Aerobacter.
    Parry RJ
    Proc Natl Acad Sci U S A; 1975 May; 72(5):1681-83. PubMed ID: 1057163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences between coumaric and cinnamic acids in membrane permeation as evidenced by time-dependent calorimetry.
    Castelli F; Uccella N; Trombetta D; Saija A
    J Agric Food Chem; 1999 Mar; 47(3):991-5. PubMed ID: 10552403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new 9,10-dihydrophenanthrene from Dendrobium moniliforme.
    Zhao N; Yang G; Zhang Y; Chen L; Chen Y
    Nat Prod Res; 2016; 30(2):174-9. PubMed ID: 26132274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single nucleotide polymorphisms of PAD1 and FDC1 show a positive relationship with ferulic acid decarboxylation ability among industrial yeasts used in alcoholic beverage production.
    Mukai N; Masaki K; Fujii T; Iefuji H
    J Biosci Bioeng; 2014 Jul; 118(1):50-5. PubMed ID: 24507903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decarboxylative conversion of hydroxycinnamic acids to hydroxystyrenes by Polyporus circinata.
    Bayne HG; Finkle BJ; Lundin RE
    J Gen Microbiol; 1976 Jul; 95(1):188-90. PubMed ID: 956775
    [No Abstract]   [Full Text] [Related]  

  • 16. Bioconversion of p-coumaric acid to p-hydroxystyrene using phenolic acid decarboxylase from B. amyloliquefaciens in biphasic reaction system.
    Jung DH; Choi W; Choi KY; Jung E; Yun H; Kazlauskas RJ; Kim BG
    Appl Microbiol Biotechnol; 2013 Feb; 97(4):1501-11. PubMed ID: 23081771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial transformations of ferulic acid by Saccharomyces cerevisiae and Pseudomonas fluorescens.
    Huang Z; Dostal L; Rosazza JP
    Appl Environ Microbiol; 1993 Jul; 59(7):2244-50. PubMed ID: 8395165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decarboxylation of ferulic acid to 4-vinyl guaiacol by Streptomyces setonii.
    Max B; Carballo J; Cortés S; Domínguez JM
    Appl Biochem Biotechnol; 2012 Jan; 166(2):289-99. PubMed ID: 22081324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partial conversion of cinnamic acid into styrene by growing cultures and cell-free extracts of the yeast Cryptococcus elinovii.
    Middelhoven WJ; Gelpke MD
    Antonie Van Leeuwenhoek; 1995; 67(2):217-9. PubMed ID: 7771769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Transamination and decarboxylation of ornithine and lysine in higher plants].
    Hasse K; Ratych OT; Salnikow J
    Hoppe Seylers Z Physiol Chem; 1967 Jul; 348(7):843-51. PubMed ID: 5592092
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.