BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 11384154)

  • 1. Glutathione transport in human retinal pigment epithelial (HRPE) cells: apical localization of sodium-dependent gsh transport.
    Kannan R; Tang D; Hu J; Bok D
    Exp Eye Res; 2001 Jun; 72(6):661-6. PubMed ID: 11384154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Net glutathione secretion across primary cultured rabbit conjunctival epithelial cell layers.
    Gukasyan HJ; Lee VH; Kim KJ; Kannan R
    Invest Ophthalmol Vis Sci; 2002 Apr; 43(4):1154-61. PubMed ID: 11923260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bidirectional glutathione transport by cultured human retinal pigment epithelial cells.
    Lu SC; Sun WM; Nagineni CN; Hooks JJ; Kannan R
    Invest Ophthalmol Vis Sci; 1995 Nov; 36(12):2523-30. PubMed ID: 7591642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a novel, sodium-dependent, reduced glutathione transporter in the rat lens epithelium.
    Kannan R; Yi JR; Tang D; Zlokovic BV; Kaplowitz N
    Invest Ophthalmol Vis Sci; 1996 Oct; 37(11):2269-75. PubMed ID: 8843923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutathione transport in immortalized HLE cells and expression of transport in HLE cell poly(A)+ RNA-injected Xenopus laevis oocytes.
    Kannan R; Bao Y; Mittur A; Andley UP; Kaplowitz N
    Invest Ophthalmol Vis Sci; 1998 Jul; 39(8):1379-86. PubMed ID: 9660486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation of apical and basolateral VEGF-A and VEGF-C secretion by oxidative stress in polarized retinal pigment epithelial cells.
    Kannan R; Zhang N; Sreekumar PG; Spee CK; Rodriguez A; Barron E; Hinton DR
    Mol Vis; 2006 Dec; 12():1649-59. PubMed ID: 17200665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased oxidant-induced apoptosis in cultured nondividing human retinal pigment epithelial cells.
    Jiang S; Moriarty SE; Grossniklaus H; Nelson KC; Jones DP; Sternberg P
    Invest Ophthalmol Vis Sci; 2002 Aug; 43(8):2546-53. PubMed ID: 12147583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protection from oxidant injury by sodium-dependent GSH uptake in retinal Müller cells.
    Kannan R; Bao Y; Wang Y; Sarthy VP; Kaplowitz N
    Exp Eye Res; 1999 May; 68(5):609-16. PubMed ID: 10328975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protection of retinal pigment epithelial cells from oxidative damage by oltipraz, a cancer chemopreventive agent.
    Nelson KC; Armstrong JS; Moriarty S; Cai J; Wu MW; Sternberg P; Jones DP
    Invest Ophthalmol Vis Sci; 2002 Nov; 43(11):3550-4. PubMed ID: 12407167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and transport of glutathione by cultured human retinal pigment epithelial cells.
    Davidson PC; Sternberg P; Jones DP; Reed RL
    Invest Ophthalmol Vis Sci; 1994 May; 35(6):2843-9. PubMed ID: 8188479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GSH transport in human cerebrovascular endothelial cells and human astrocytes: evidence for luminal localization of Na+-dependent GSH transport in HCEC.
    Kannan R; Chakrabarti R; Tang D; Kim KJ; Kaplowitz N
    Brain Res; 2000 Jan; 852(2):374-82. PubMed ID: 10678765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Na(+)-dependent glutamate transporter in human retinal pigment epithelial cells.
    Miyamoto Y; Del Monte MA
    Invest Ophthalmol Vis Sci; 1994 Sep; 35(10):3589-98. PubMed ID: 7916336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cysteine starvation activates the redox-dependent mitochondrial permeability transition in retinal pigment epithelial cells.
    Armstrong JS; Whiteman M; Yang H; Jones DP; Sternberg P
    Invest Ophthalmol Vis Sci; 2004 Nov; 45(11):4183-9. PubMed ID: 15505073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of dietary inducer dimethylfumarate on glutathione in cultured human retinal pigment epithelial cells.
    Nelson KC; Carlson JL; Newman ML; Sternberg P; Jones DP; Kavanagh TJ; Diaz D; Cai J; Wu M
    Invest Ophthalmol Vis Sci; 1999 Aug; 40(9):1927-35. PubMed ID: 10440245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adrenergic receptor activated ion transport in human fetal retinal pigment epithelium.
    Quinn RH; Quong JN; Miller SS
    Invest Ophthalmol Vis Sci; 2001 Jan; 42(1):255-64. PubMed ID: 11133877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane polarity of the Na(+)-K+ pump in primary cultures of Xenopus retinal pigment epithelium.
    Defoe DM; Ahmad A; Chen W; Hughes BA
    Exp Eye Res; 1994 Nov; 59(5):587-96. PubMed ID: 9492760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct mechanisms of zinc uptake at the apical and basolateral membranes of caco-2 cells.
    Raffaniello RD; Lee SY; Teichberg S; Wapnir RA
    J Cell Physiol; 1992 Aug; 152(2):356-61. PubMed ID: 1639868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transepithelial transport of oral cephalosporins by monolayers of intestinal epithelial cell line Caco-2: specific transport systems in apical and basolateral membranes.
    Inui K; Yamamoto M; Saito H
    J Pharmacol Exp Ther; 1992 Apr; 261(1):195-201. PubMed ID: 1560365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of brimonidine transport in retinal pigment epithelium.
    Zhang N; Kannan R; Okamoto CT; Ryan SJ; Lee VH; Hinton DR
    Invest Ophthalmol Vis Sci; 2006 Jan; 47(1):287-94. PubMed ID: 16384975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cultured monolayers of the dog jejunum with the structural and functional properties resembling the normal epithelium.
    Weng XH; Beyenbach KW; Quaroni A
    Am J Physiol Gastrointest Liver Physiol; 2005 Apr; 288(4):G705-17. PubMed ID: 15550553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.