These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 11384189)
1. Photochemically induced electron transfer. Bellelli A; Brunori M; Brzezinski P; Wilson MT Methods; 2001 Jun; 24(2):139-52. PubMed ID: 11384189 [TBL] [Abstract][Full Text] [Related]
2. Intramolecular electron transfer in nitrite reductases. Wherland S; Farver O; Pecht I Chemphyschem; 2005 May; 6(5):805-12. PubMed ID: 15884062 [TBL] [Abstract][Full Text] [Related]
3. How donor-bridge-acceptor energetics influence electron tunneling dynamics and their distance dependences. Wenger OS Acc Chem Res; 2011 Jan; 44(1):25-35. PubMed ID: 20945886 [TBL] [Abstract][Full Text] [Related]
4. Photoinduced electron transfer in singly labeled thiouredopyrenetrisulfonate cytochrome c derivatives. Kotlyar AB; Borovok N; Hazani M Biochemistry; 1997 Dec; 36(50):15828-33. PubMed ID: 9398314 [TBL] [Abstract][Full Text] [Related]
5. Redox equilibria in hydroxylamine oxidoreductase. Electrostatic control of electron redistribution in multielectron oxidative processes. Kurnikov IV; Ratner MA; Pacheco AA Biochemistry; 2005 Feb; 44(6):1856-63. PubMed ID: 15697211 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and room temperature photo-induced electron transfer in biologically active bis(terpyridine)ruthenium(II)-cytochrome c bioconjugates and the effect of solvents on the bioconjugation of cytochrome c. Peterson JR; Smith TA; Thordarson P Org Biomol Chem; 2010 Jan; 8(1):151-62. PubMed ID: 20024146 [TBL] [Abstract][Full Text] [Related]
7. Directional electron transfer in ruthenium-modified horse heart cytochrome c. Bechtold R; Kuehn C; Lepre C; Isied SS Nature; 1986 Jul 17-23; 322(6076):286-8. PubMed ID: 3016549 [TBL] [Abstract][Full Text] [Related]
8. FTIR detection of protonation/deprotonation of key carboxyl side chains caused by redox change of the Cu(A)-heme a moiety and ligand dissociation from the heme a3-Cu(B) center of bovine heart cytochrome c oxidase. Okuno D; Iwase T; Shinzawa-Itoh K; Yoshikawa S; Kitagawa T J Am Chem Soc; 2003 Jun; 125(24):7209-18. PubMed ID: 12797794 [TBL] [Abstract][Full Text] [Related]
9. Hopping in the electron-transfer photocycle of the 1:1 complex of Zn-cytochrome c peroxidase with cytochrome c. Seifert JL; Pfister TD; Nocek JM; Lu Y; Hoffman BM J Am Chem Soc; 2005 Apr; 127(16):5750-1. PubMed ID: 15839648 [TBL] [Abstract][Full Text] [Related]
10. Design of a ruthenium-labeled cytochrome c derivative to study electron transfer with the cytochrome bc1 complex. Engstrom G; Rajagukguk R; Saunders AJ; Patel CN; Rajagukguk S; Merbitz-Zahradnik T; Xiao K; Pielak GJ; Trumpower B; Yu CA; Yu L; Durham B; Millett F Biochemistry; 2003 Mar; 42(10):2816-24. PubMed ID: 12627947 [TBL] [Abstract][Full Text] [Related]
11. Electron transfer chain reaction of the extracellular flavocytochrome cellobiose dehydrogenase from the basidiomycete Phanerochaete chrysosporium. Igarashi K; Yoshida M; Matsumura H; Nakamura N; Ohno H; Samejima M; Nishino T FEBS J; 2005 Jun; 272(11):2869-77. PubMed ID: 15943818 [TBL] [Abstract][Full Text] [Related]
12. Laser photoinitiated nitrosylation of 3-electron reduced Nm europaea hydroxylamine oxidoreductase: kinetic and thermodynamic properties of the nitrosylated enzyme. Cabail MZ; Kostera J; Pacheco AA Inorg Chem; 2005 Jan; 44(2):225-31. PubMed ID: 15651867 [TBL] [Abstract][Full Text] [Related]
13. Theoretical study on electronic structures of FeOO, FeOOH, FeO(H2O), and FeO in hemes: as intermediate models of dioxygen reduction in cytochrome c oxidase. Yoshioka Y; Satoh H; Mitani M J Inorg Biochem; 2007 Oct; 101(10):1410-27. PubMed ID: 17662458 [TBL] [Abstract][Full Text] [Related]
14. Electronic structures of heme a of cytochrome c oxidase in the redox states--charge density migration to the propionate groups of heme a. Takano Y; Nakamura H J Comput Chem; 2010 Apr; 31(5):954-62. PubMed ID: 19645053 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of electron-withdrawing group effects on heme binding in designed proteins: implications for heme a in cytochrome c oxidase. Zhuang J; Amoroso JH; Kinloch R; Dawson JH; Baldwin MJ; Gibney BR Inorg Chem; 2006 Jun; 45(12):4685-94. PubMed ID: 16749832 [TBL] [Abstract][Full Text] [Related]
16. Heterogeneous electron transfer of a two-centered heme protein: redox and electrocatalytic properties of surface-immobilized cytochrome C(4). Monari S; Battistuzzi G; Borsari M; Di Rocco G; Martini L; Ranieri A; Sola M J Phys Chem B; 2009 Oct; 113(41):13645-53. PubMed ID: 19764800 [TBL] [Abstract][Full Text] [Related]
17. A role for the protein in internal electron transfer to the catalytic center of cytochrome c oxidase. Antalik M; Jancura D; Palmer G; Fabian M Biochemistry; 2005 Nov; 44(45):14881-9. PubMed ID: 16274235 [TBL] [Abstract][Full Text] [Related]
18. The type I/type II cytochrome c3 complex: an electron transfer link in the hydrogen-sulfate reduction pathway. Pieulle L; Morelli X; Gallice P; Lojou E; Barbier P; Czjzek M; Bianco P; Guerlesquin F; Hatchikian EC J Mol Biol; 2005 Nov; 354(1):73-90. PubMed ID: 16226767 [TBL] [Abstract][Full Text] [Related]
19. Metalloprotein association, self-association, and dynamics governed by hydrophobic interactions: simultaneous occurrence of gated and true electron-transfer reactions between cytochrome f and cytochrome c(6) from Chlamydomonas reinhardtii. Grove TZ; Kostić NM J Am Chem Soc; 2003 Sep; 125(35):10598-607. PubMed ID: 12940743 [TBL] [Abstract][Full Text] [Related]
20. Use of thiouredopyrenetrisulfonate photochemistry for driving electron transfer reactions in aqueous solutions. Kotlyar AB; Borovok N; Hazani M Biochemistry; 1997 Dec; 36(50):15823-7. PubMed ID: 9398313 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]