These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 11384311)

  • 1. Incipient nodal pairing in planar d-wave superconductors.
    Khveshchenko DV; Paaske J
    Phys Rev Lett; 2001 May; 86(20):4672-5. PubMed ID: 11384311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theory of nodal s ± -wave pairing symmetry in the Pu-based 115 superconductor family.
    Das T; Zhu JX; Graf MJ
    Sci Rep; 2015 Feb; 5():8632. PubMed ID: 25721375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nodal d + id pairing and topological phases on the triangular lattice of Na(x)CoO(2).yH(2)O: evidence for an unconventional superconducting state.
    Zhou S; Wang Z
    Phys Rev Lett; 2008 May; 100(21):217002. PubMed ID: 18518626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic-field-induced insulating behavior in highly oriented pyrolitic graphite.
    Khveshchenko DV
    Phys Rev Lett; 2001 Nov; 87(20):206401. PubMed ID: 11690494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interacting random Dirac fermions in superconducting cuprates.
    Khveshchenko DV; Yashenkin AG; Gornyi IV
    Phys Rev Lett; 2001 May; 86(20):4668-71. PubMed ID: 11384310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impurity bound states in fully gapped d-wave superconductors with subdominant order parameters.
    Mashkoori M; Björnson K; Black-Schaffer AM
    Sci Rep; 2017 Mar; 7():44107. PubMed ID: 28281570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualizing pairing symmetry in nematic superconductors using spin-polarized spectroscopy of magnetic impurities.
    Chen L; Zhang YL; Han RS
    J Phys Condens Matter; 2019 Dec; 31(50):505603. PubMed ID: 31487693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum phase transitions in d-wave superconductors.
    Vojta M; Zhang Y; Sachdev S
    Phys Rev Lett; 2000 Dec; 85(23):4940-3. PubMed ID: 11102156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quasiparticle conductivities in disordered d-wave superconductors.
    Fabrizio M; Dell'Anna L; Castellani C
    Phys Rev Lett; 2002 Feb; 88(7):076603. PubMed ID: 11863927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of weak-limit quasiparticle scattering via broadband microwave spectroscopy of a d-wave superconductor.
    Turner PJ; Harris R; Kamal S; Hayden ME; Broun DM; Morgan DC; Hosseini A; Dosanjh P; Mullins GK; Preston JS; Liang R; Bonn DA; Hardy WN
    Phys Rev Lett; 2003 Jun; 90(23):237005. PubMed ID: 12857284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nodal quasiparticles in stripe ordered superconductors.
    Granath M; Oganesyan V; Kivelson SA; Fradkin E; Emery VJ
    Phys Rev Lett; 2001 Oct; 87(16):167011. PubMed ID: 11690235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dirac fermions and conductance oscillations in s- and d-wave superconductor-graphene junctions.
    Linder J; Sudbø A
    Phys Rev Lett; 2007 Oct; 99(14):147001. PubMed ID: 17930704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic structure of strongly correlated d-wave superconductors.
    Edegger B; Muthukumar VN; Gros C; Anderson PW
    Phys Rev Lett; 2006 May; 96(20):207002. PubMed ID: 16803197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Weak-field thermal hall conductivity in the mixed state of d-wave superconductors.
    Durst AC; Vishwanath A; Lee PA
    Phys Rev Lett; 2003 May; 90(18):187002. PubMed ID: 12786037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic Catalysis in Graphene Effective Field Theory.
    DeTar C; Winterowd C; Zafeiropoulos S
    Phys Rev Lett; 2016 Dec; 117(26):266802. PubMed ID: 28059530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model for determining the pairing symmetry and relative sign of the energy gap of iron-arsenide superconductors using tunneling spectroscopy.
    Wang D; Wan Y; Wang QH
    Phys Rev Lett; 2009 May; 102(19):197004. PubMed ID: 19518990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Index theoretic characterization of d-wave superconductors in the vortex state.
    Vafek O; Melikyan A
    Phys Rev Lett; 2006 Apr; 96(16):167005. PubMed ID: 16712264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dirac and Weyl superconductors in three dimensions.
    Yang SA; Pan H; Zhang F
    Phys Rev Lett; 2014 Jul; 113(4):046401. PubMed ID: 25105637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Berry phases and the intrinsic thermal Hall effect in high-temperature cuprate superconductors.
    Cvetkovic V; Vafek O
    Nat Commun; 2015 Mar; 6():6518. PubMed ID: 25758469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nodal quasiparticles and classical phase dluctuations in d-wave superconductors.
    Samokhin KV; Mitrović B
    Phys Rev Lett; 2004 Feb; 92(5):057002. PubMed ID: 14995333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.