These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 11384486)

  • 1. Capillary condensation in a fractal porous medium.
    Broseta D; Barré L; Vizika O; Shahidzadeh N; Guilbaud JP; Lyonnard S
    Phys Rev Lett; 2001 Jun; 86(23):5313-6. PubMed ID: 11384486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capillary wave fluctuations and intrinsic widths of coupled fluid-fluid interfaces: an x-ray scattering study of a wetting film on bulk liquid.
    Fukuto M; Gang O; Alvine KJ; Pershan PS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 1):031607. PubMed ID: 17025643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contrast Variation Small Angle Neutron Scattering Investigation of Micro- and Nano-Sized TATB.
    Song P; Tu X; Bai L; Sun G; Tian Q; Gong J; Zeng G; Chen L; Qiu L
    Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31426294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of pore structure on capillary condensation in a porous medium.
    Deinert MR; Parlange JY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021202. PubMed ID: 19391731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small angle scattering methods to study porous materials under high uniaxial strain.
    Le Floch S; Balima F; Pischedda V; Legrand F; San-Miguel A
    Rev Sci Instrum; 2015 Feb; 86(2):023901. PubMed ID: 25725857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isotherms of Capillary Condensation Influenced by Formation of Adsorption Films.
    Churaev NV; Starke G; Adolphs J
    J Colloid Interface Sci; 2000 Jan; 221(2):246-253. PubMed ID: 10631027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A more informative approach for characterization of polymer monolithic phases: small angle neutron scattering/ultrasmall angle neutron scattering.
    Ford KM; Konzman BG; Rubinson JF
    Anal Chem; 2011 Dec; 83(24):9201-5. PubMed ID: 22066706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of fractal dimension of colloidal gels in the presence of multiple scattering.
    Lattuada M; Wu H; Morbidelli M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 1):061404. PubMed ID: 11736182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship between interface structure, conformality and perpendicular anisotropy in CoPd multilayers.
    Rozatian AS; Marrows CH; Hase TP; Tanner BK
    J Phys Condens Matter; 2005 Jun; 17(25):3759-70. PubMed ID: 21690694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-specific retention of colloids at rough rock surfaces.
    Darbha GK; Fischer C; Luetzenkirchen J; Schäfer T
    Environ Sci Technol; 2012 Sep; 46(17):9378-87. PubMed ID: 22861645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pushing the limits of accessible length scales via a modified Porod analysis in small-angle neutron scattering on ordered systems.
    Brems XS; Mühlbauer S; Cubitt R
    J Appl Crystallogr; 2024 Oct; 57(Pt 5):1358-1372. PubMed ID: 39387081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scattering structure factor of colloidal gels characterized by static light scattering, small-angle light scattering, and small-angle neutron scattering measurements.
    Wu H; Xie J; Lattuada M; Morbidelli M
    Langmuir; 2005 Apr; 21(8):3291-5. PubMed ID: 15807566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrasolid Interfacial Fractality of a Less-Crystalline Solid.
    Ruike M; Murase N; Imai J; Ishii C; Suzuki T; Kaneko K
    J Colloid Interface Sci; 1998 Nov; 207(2):355-362. PubMed ID: 9792780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of surface roughness and softness on water capillary adhesion in apolar media.
    Banerjee S; Mulder P; Kleijn JM; Cohen Stuart MA
    J Phys Chem A; 2012 Jun; 116(25):6481-8. PubMed ID: 22519933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of drying fronts in three-dimensional porous media.
    Shokri N; Sahimi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066312. PubMed ID: 23005211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the Micro-scale Surface Roughness Effect on Immiscible Fluids and Interfacial Areas in Porous Media Using the Measurements of Interfacial Partitioning Tracer Tests.
    Jiang H; Guo B; Brusseau ML
    Adv Water Resour; 2020 Dec; 146():. PubMed ID: 33311835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermally excited capillary waves at vapor/liquid interfaces of water-alcohol mixtures.
    Vaknin D; Bu W; Sung J; Jeon Y; Kim D
    J Phys Condens Matter; 2009 Mar; 21(11):115105. PubMed ID: 21693910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repeated sorption of water in SBA-15 investigated by means of in situ small-angle x-ray scattering.
    Erko M; Wallacher D; Findenegg GH; Paris O
    J Phys Condens Matter; 2012 Jul; 24(28):284112. PubMed ID: 22738928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-Porod behavior in systems with rough morphologies.
    Shrivastav GP; Banerjee V; Puri S
    Eur Phys J E Soft Matter; 2014 Oct; 37(10):98. PubMed ID: 25348663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.