These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

530 related articles for article (PubMed ID: 11384494)

  • 1. Mott-hubbard metal-insulator transition in paramagnetic V2O3: an LDA+DMFT(QMC) study.
    Held K; Keller G; Eyert V; Vollhardt D; Anisimov VI
    Phys Rev Lett; 2001 Jun; 86(23):5345-8. PubMed ID: 11384494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orbital switching and the first-order insulator-metal transition in paramagnetic V2O3.
    Laad MS; Craco L; Müller-Hartmann E
    Phys Rev Lett; 2003 Oct; 91(15):156402. PubMed ID: 14611481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reliability of the one-crossing approximation in describing the Mott transition.
    Vildosola V; Pourovskii LV; Manuel LO; Roura-Bas P
    J Phys Condens Matter; 2015 Dec; 27(48):485602. PubMed ID: 26565588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressure-induced metal-insulator transition in LaMnO3 is not of Mott-Hubbard type.
    Yamasaki A; Feldbacher M; Yang YF; Andersen OK; Held K
    Phys Rev Lett; 2006 Apr; 96(16):166401. PubMed ID: 16712252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast multi-orbital equation of motion impurity solver for dynamical mean field theory.
    Feng Q; Oppeneer PM
    J Phys Condens Matter; 2011 Oct; 23(42):425601. PubMed ID: 21970899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cluster dynamical mean field theory of the Mott transition.
    Park H; Haule K; Kotliar G
    Phys Rev Lett; 2008 Oct; 101(18):186403. PubMed ID: 18999845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coulomb interaction parameters in bcc iron: an LDA+DMFT study.
    Belozerov AS; Anisimov VI
    J Phys Condens Matter; 2014 Sep; 26(37):375601. PubMed ID: 25156797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscopic study of a spin-orbit-induced Mott insulator in Ir oxides.
    Watanabe H; Shirakawa T; Yunoki S
    Phys Rev Lett; 2010 Nov; 105(21):216410. PubMed ID: 21231335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Filling of the mott-hubbard gap in the high temperature photoemission spectrum of (V0.972Cr0.028)2O3.
    Mo SK; Kim HD; Allen JW; Gweon GH; Denlinger JD; Park JH; Sekiyama A; Yamasaki A; Suga S; Metcalf P; Held K
    Phys Rev Lett; 2004 Aug; 93(7):076404. PubMed ID: 15324257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of real materials with strong electronic correlations by the LDA+DMFT method.
    Anisimov VI; Lukoyanov AV
    Acta Crystallogr C Struct Chem; 2014 Feb; 70(Pt 2):137-59. PubMed ID: 24508959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Projective quantum monte carlo method for the anderson impurity model and its application to dynamical mean field theory.
    Feldbacher M; Held K; Assaad FF
    Phys Rev Lett; 2004 Sep; 93(13):136405. PubMed ID: 15524746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculation of metallic and insulating phases of V2O3 by hybrid density functionals.
    Guo Y; Clark SJ; Robertson J
    J Chem Phys; 2014 Feb; 140(5):054702. PubMed ID: 24511963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-insulator transitions in the half-filled ionic Hubbard model.
    Hoang AT
    J Phys Condens Matter; 2010 Mar; 22(9):095602. PubMed ID: 21389421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kondo metal and ferrimagnetic insulator on the triangular kagome lattice.
    Chen YH; Tao HS; Yao DX; Liu WM
    Phys Rev Lett; 2012 Jun; 108(24):246402. PubMed ID: 23004298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced effective spin-orbital degeneracy and spin-orbital ordering in paramagnetic transition-metal oxides: Sr2IrO4 versus Sr2RhO4.
    Martins C; Aichhorn M; Vaugier L; Biermann S
    Phys Rev Lett; 2011 Dec; 107(26):266404. PubMed ID: 22243172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bandstructure meets many-body theory: the LDA+DMFT method.
    Held K; Andersen OK; Feldbacher M; Yamasaki A; Yang YF
    J Phys Condens Matter; 2008 Feb; 20(6):064202. PubMed ID: 21693864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coulomb correlations in 4d and 5d oxides from first principles-or how spin-orbit materials choose their effective orbital degeneracies.
    Martins C; Aichhorn M; Biermann S
    J Phys Condens Matter; 2017 Jul; 29(26):263001. PubMed ID: 28262638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quasi-continuous-time impurity solver for the dynamical mean-field theory with linear scaling in the inverse temperature.
    Rost D; Assaad F; Blümer N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053305. PubMed ID: 23767655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First principles LDA + U and GGA + U study of protactinium and protactinium oxides: dependence on the effective U parameter.
    Obodo KO; Chetty N
    J Phys Condens Matter; 2013 Apr; 25(14):145603. PubMed ID: 23478314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective orbital reconstruction in tetragonal FeS: A density functional dynamical mean-field theory study.
    Craco L; Leoni S
    Sci Rep; 2017 Apr; 7():46439. PubMed ID: 28418042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.