BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 11385278)

  • 1. Evidence of the significance of secondary excitations of the vocal tract for vocal intensity.
    Alku P; Vintturi J; Vilkman E
    Folia Phoniatr Logop; 2001; 53(4):185-97. PubMed ID: 11385278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic extremes of voice in the light of time domain parameters extracted from the amplitude features of glottal flow and its derivative.
    Vilkman E; Alku P; Vintturi J
    Folia Phoniatr Logop; 2002; 54(3):144-57. PubMed ID: 12077506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parameterization of the voice source by combining spectral decay and amplitude features of the glottal flow.
    Alku P; Vilkman E; Laukkanen AM
    J Speech Lang Hear Res; 1998 Oct; 41(5):990-1002. PubMed ID: 9771623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Objective analysis of vocal warm-up with special reference to ergonomic factors.
    Vintturi J; Alku P; Lauri ER; Sala E; Sihvo M; Vilkman I
    J Voice; 2001 Mar; 15(1):36-53. PubMed ID: 12269633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of glottal voice source quantification parameters in breathy, normal and pressed phonation of female and male speakers.
    Alku P; Vilkman E
    Folia Phoniatr Logop; 1996; 48(5):240-54. PubMed ID: 8828282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of vocal aging using parameters extracted from the glottal signal.
    Forero Mendoza LA; Cataldo E; Vellasco MM; Silva MA; Apolinário JA
    J Voice; 2014 Sep; 28(5):532-7. PubMed ID: 24880675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of post-loading rest on acoustic parameters with special reference to gender and ergonomic factors.
    Vintturi J; Alku P; Lauri ER; Sala E; Sihvo M; Vilkman E
    Folia Phoniatr Logop; 2001; 53(6):338-50. PubMed ID: 11721140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An amplitude quotient based method to analyze changes in the shape of the glottal pulse in the regulation of vocal intensity.
    Alku P; Airas M; Björkner E; Sundberg J
    J Acoust Soc Am; 2006 Aug; 120(2):1052-62. PubMed ID: 16938991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phonatory control in male singing: a study of the effects of subglottal pressure, fundamental frequency, and mode of phonation on the voice source.
    Sundberg J; Titze I; Scherer R
    J Voice; 1993 Mar; 7(1):15-29. PubMed ID: 8353616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects on the glottal voice source of vocal loudness variation in untrained female and male voices.
    Sundberg J; Fahlstedt E; Morell A
    J Acoust Soc Am; 2005 Feb; 117(2):879-85. PubMed ID: 15759707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of the voice source from speech pressure signals: evaluation of an inverse filtering technique using physical modelling of voice production.
    Alku P; Story B; Airas M
    Folia Phoniatr Logop; 2006; 58(2):102-13. PubMed ID: 16479132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of glottal open regions by exploiting changes in the vocal tract system characteristics.
    Prasad RS; Yegnanarayana B
    J Acoust Soc Am; 2016 Jul; 140(1):666. PubMed ID: 27475188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional model of vocal fold vibration for sound synthesis of voice and soprano singing.
    Adachi S; Yu J
    J Acoust Soc Am; 2005 May; 117(5):3213-24. PubMed ID: 15957788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of prolonged oral reading on F0, SPL, subglottal pressure and amplitude characteristics of glottal flow waveforms.
    Vilkman E; Lauri ER; Alku P; Sala E; Sihvo M
    J Voice; 1999 Jun; 13(2):303-12. PubMed ID: 10442763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of two inverse filtering methods in parameterization of the glottal closing phase characteristics in different phonation types.
    Lehto L; Airas M; Björkner E; Sundberg J; Alku P
    J Voice; 2007 Mar; 21(2):138-50. PubMed ID: 16478660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of lung volume on the glottal voice source.
    Iwarsson J; Thomasson M; Sundberg J
    J Voice; 1998 Dec; 12(4):424-33. PubMed ID: 9988029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glottal Adduction and Subglottal Pressure in Singing.
    Herbst CT; Hess M; Müller F; Švec JG; Sundberg J
    J Voice; 2015 Jul; 29(4):391-402. PubMed ID: 25944295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of glottal dynamics in the production of shouted speech.
    Mittal VK; Yegnanarayana B
    J Acoust Soc Am; 2013 May; 133(5):3050-61. PubMed ID: 23654408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skewing of the glottal flow with respect to the glottal area measured in natural production of vowels.
    Alku P; Murtola T; Malinen J; Geneid A; Vilkman E
    J Acoust Soc Am; 2019 Oct; 146(4):2501. PubMed ID: 31671985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phonation Demonstrates Goal Dependence Under Unique Vocal Intensity and Aerobic Workload Conditions.
    Ziegler A; VanSwearingen J; Jakicic JM; Verdolini Abbott K
    J Speech Lang Hear Res; 2019 Aug; 62(8):2584-2600. PubMed ID: 31291159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.