These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 11386543)

  • 41. Sound propagation over the ground with a random spatially-varying surface admittance.
    Dragna D; Blanc-Benon P
    J Acoust Soc Am; 2017 Oct; 142(4):2058. PubMed ID: 29092574
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Vertical and slanted sound propagation in the near-ground atmosphere: Coherence and distributions.
    Ostashev VE; Kamrath MJ; Wilson DK; White MJ; Hart CR; Finn A
    J Acoust Soc Am; 2021 Oct; 150(4):3109. PubMed ID: 34717482
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Non-line-of-sight ultraviolet single-scatter propagation model in random turbulent medium.
    Xiao H; Zuo Y; Wu J; Li Y; Lin J
    Opt Lett; 2013 Sep; 38(17):3366-9. PubMed ID: 23988959
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Description and quantification of uncertainty in outdoor sound propagation calculations.
    Wilson DK; Pettit CL; Ostashev VE; Vecherin SN
    J Acoust Soc Am; 2014 Sep; 136(3):1013. PubMed ID: 25190377
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Acoustic propagation and atmosphere characteristics derived from infrasonic waves generated by the Concorde.
    Le PA; Garcés M; Blanc E; Barthélémy M; Drob DP
    J Acoust Soc Am; 2002 Jan; 111(1 Pt 2):629-41. PubMed ID: 11837968
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Proper orthogonal decomposition and cluster weighted modeling for sensitivity analysis of sound propagation in the atmospheric surface layer.
    Pettit CL; Wilson DK
    J Acoust Soc Am; 2007 Sep; 122(3):1374. PubMed ID: 17927400
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Signal power distributions for simulated outdoor sound propagation in varying refractive conditions.
    Wilson DK; Pettit CL; Ostashev VE; Kamrath MJ
    J Acoust Soc Am; 2022 Jun; 151(6):3895. PubMed ID: 35778174
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Vertical and slanted sound propagation in the near-ground atmosphere: Amplitude and phase fluctuations.
    Kamrath MJ; Ostashev VE; Wilson DK; White MJ; Hart CR; Finn A
    J Acoust Soc Am; 2021 Mar; 149(3):2055. PubMed ID: 33810766
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Propagation of sound from a monopole source above an impedance-backed porous layer.
    Li KM; Liu S
    J Acoust Soc Am; 2012 Jun; 131(6):4376-88. PubMed ID: 22712912
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Beam scintillations for ground-to-space propagation. Part I: Path integrals and analytic techniques.
    Charnotskii M
    J Opt Soc Am A Opt Image Sci Vis; 2010 Oct; 27(10):2169-79. PubMed ID: 20922007
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A wide angle and high Mach number parabolic equation.
    Lingevitch JF; Collins MD; Dacol DK; Drob DP; Rogers JC; Siegmann WL
    J Acoust Soc Am; 2002 Feb; 111(2):729-34. PubMed ID: 11865817
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Finite-difference time-domain synthesis of infrasound propagation through an absorbing atmosphere.
    de Groot-Hedlin C
    J Acoust Soc Am; 2008 Sep; 124(3):1430-41. PubMed ID: 19045635
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Variability due to short-distance favorable sound propagation and its consequences for immission assessment.
    Van Renterghem T; Botteldooren D
    J Acoust Soc Am; 2018 Jun; 143(6):3406. PubMed ID: 29960449
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Validity of the effective sound speed approximation in parabolic equation models for wind turbine noise propagation.
    Kayser B; Mascarenhas D; Cotté B; Ecotière D; Gauvreau B
    J Acoust Soc Am; 2023 Mar; 153(3):1846. PubMed ID: 37002074
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparisons between physics-based, engineering, and statistical learning models for outdoor sound propagation.
    Hart CR; Reznicek NJ; Wilson DK; Pettit CL; Nykaza ET
    J Acoust Soc Am; 2016 May; 139(5):2640. PubMed ID: 27250158
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A generalized statistical Burgers equation to predict the evolution of the power spectral density of high-intensity noise in atmosphere.
    Menounou P; Athanasiadis AN
    J Acoust Soc Am; 2009 Sep; 126(3):983-94. PubMed ID: 19739711
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sensitivity analysis of a parabolic equation model to ground impedance and surface roughness for wind turbine noise.
    Kayser B; Gauvreau B; Ecotière D
    J Acoust Soc Am; 2019 Nov; 146(5):3222. PubMed ID: 31795674
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Generalized lattice Boltzmann equation with forcing term for computation of wall-bounded turbulent flows.
    Premnath KN; Pattison MJ; Banerjee S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026703. PubMed ID: 19391870
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Systematic perturbation approach to the propagation of an electromagnetic beam wave in a turbulent atmosphere.
    Sung CC; Stettler JD
    Opt Lett; 1981 Nov; 6(11):537-9. PubMed ID: 19710763
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fast asymptotic solutions for sound fields above and below a rigid porous ground.
    Li KM; Liu S
    J Acoust Soc Am; 2011 Sep; 130(3):1103-14. PubMed ID: 21895053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.