These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 11386545)

  • 21. Sound source localization in a randomly inhomogeneous medium using matched statistical moment method.
    Wang X; Khazaie S; Sagaut P
    J Acoust Soc Am; 2015 Dec; 138(6):3896-906. PubMed ID: 26723344
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of the moments in advection-diffusion lattice Boltzmann method. I. Truncation dispersion, skewness, and kurtosis.
    Ginzburg I
    Phys Rev E; 2017 Jan; 95(1-1):013304. PubMed ID: 28208379
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ray-based description of mode coupling by sound speed fluctuations in the ocean.
    Virovlyansky AL
    J Acoust Soc Am; 2015 Apr; 137(4):2137-47. PubMed ID: 25920863
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sound propagation over the ground with a random spatially-varying surface admittance.
    Dragna D; Blanc-Benon P
    J Acoust Soc Am; 2017 Oct; 142(4):2058. PubMed ID: 29092574
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Beam scintillations for ground-to-space propagation. Part I: Path integrals and analytic techniques.
    Charnotskii M
    J Opt Soc Am A Opt Image Sci Vis; 2010 Oct; 27(10):2169-79. PubMed ID: 20922007
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An exact point source starting field for the Fourier parabolic equation in outdoor sound propagation.
    Gilbert KE; Di X
    J Acoust Soc Am; 2007 May; 121(5 Pt1):EL203-10. PubMed ID: 17550204
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phase-preserving narrow- and wide-angle parabolic equations for sound propagation in moving mediaa).
    Ostashev VE; Colas J; Dragna D; Wilson DK
    J Acoust Soc Am; 2024 Feb; 155(2):1086-1102. PubMed ID: 38341733
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparisons between physics-based, engineering, and statistical learning models for outdoor sound propagation.
    Hart CR; Reznicek NJ; Wilson DK; Pettit CL; Nykaza ET
    J Acoust Soc Am; 2016 May; 139(5):2640. PubMed ID: 27250158
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spectral expansion method in problems of laser-beam propagation in the turbulent atmosphere.
    Aksenov VP; Mironov VL
    Opt Lett; 1978 Nov; 3(5):184-6. PubMed ID: 19684740
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extended source models for wind turbine noise propagation.
    Cotté B
    J Acoust Soc Am; 2019 Mar; 145(3):1363. PubMed ID: 31067934
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An inter-model comparison of parabolic equation methods for sound propagation from wind turbines.
    Nyborg CM; Bolin K; Karasalo I; Fischer A
    J Acoust Soc Am; 2023 Aug; 154(2):1299-1314. PubMed ID: 37650781
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strength and wave parameters for sound propagation in random media.
    Ostashev VE; Wilson DK
    J Acoust Soc Am; 2017 Mar; 141(3):2079. PubMed ID: 28372070
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A wave field synthesis approach to reproduction of spatially correlated sound fields.
    Berry A; Dia R; Robin O
    J Acoust Soc Am; 2012 Feb; 131(2):1226-39. PubMed ID: 22352497
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional boundary fitted parabolic-equation model of underwater sound propagation.
    Lin YT
    J Acoust Soc Am; 2019 Sep; 146(3):2058. PubMed ID: 31590529
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nonlinear parabolic equation model for finite-amplitude sound propagation over porous ground layers.
    Leissing T; Jean P; Defrance J; Soize C
    J Acoust Soc Am; 2009 Aug; 126(2):572-81. PubMed ID: 19640021
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acoustic shock wave propagation in a heterogeneous medium: a numerical simulation beyond the parabolic approximation.
    Dagrau F; Rénier M; Marchiano R; Coulouvrat F
    J Acoust Soc Am; 2011 Jul; 130(1):20-32. PubMed ID: 21786874
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The attenuation of sound by turbulence in internal flows.
    Weng C; Boij S; Hanifi A
    J Acoust Soc Am; 2013 Jun; 133(6):3764-76. PubMed ID: 23742331
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determination of equivalent sound speed profiles for ray tracing in near-ground sound propagation.
    Prospathopoulos JM; Voutsinas SG
    J Acoust Soc Am; 2007 Sep; 122(3):1391. PubMed ID: 17927401
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Parabolic equation modeling of high frequency acoustic transmission with an evolving sea surface.
    Senne J; Song A; Badiey M; Smith KB
    J Acoust Soc Am; 2012 Sep; 132(3):1311-8. PubMed ID: 22978859
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of the Beilis-Tappert parabolic equation method to sound propagation over irregular terrain.
    Parakkal S; Gilbert KE; Di X
    J Acoust Soc Am; 2012 Feb; 131(2):1039-46. PubMed ID: 22352479
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.