These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 11386573)

  • 21. The nature of speech production impairments in anterior aphasics: an acoustic analysis of voicing in fricative consonants.
    Kurowski K; Hazen E; Blumstein SE
    Brain Lang; 2003 Mar; 84(3):353-71. PubMed ID: 12662976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Perceptual integration of acoustic cues to laryngeal contrasts in Korean fricatives.
    Lee S; Katz J
    J Acoust Soc Am; 2016 Feb; 139(2):605-11. PubMed ID: 26936544
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coding pitch differences in voiceless fricatives: Whispered relative to normal speech.
    Heeren WF
    J Acoust Soc Am; 2015 Dec; 138(6):3427-38. PubMed ID: 26723300
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrasound and acoustic analysis of sibilant fricatives in preadolescents and adults.
    Zharkova N
    J Acoust Soc Am; 2016 May; 139(5):2342. PubMed ID: 27250130
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the distinction between Norwegian [symbols: see text] from a phonetic perspective.
    Simonsen HG; Moen I
    Clin Linguist Phon; 2004; 18(6-8):605-20. PubMed ID: 15573494
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Some effects of acoustic attributes of speech on the processing of phonetic feature information.
    Soli SD
    J Exp Psychol Hum Percept Perform; 1980 Nov; 6(4):622-38. PubMed ID: 6449534
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chinese dialect identification using segmental and prosodic features.
    Chang WW; Tsai WH
    J Acoust Soc Am; 2000 Oct; 108(4):1906-13. PubMed ID: 11051516
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preliminary results on speaker-dependent variation in the TIMIT database.
    Byrd D
    J Acoust Soc Am; 1992 Jul; 92(1):593-6. PubMed ID: 1512325
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A probabilistic framework for landmark detection based on phonetic features for automatic speech recognition.
    Juneja A; Espy-Wilson C
    J Acoust Soc Am; 2008 Feb; 123(2):1154-68. PubMed ID: 18247915
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acoustic cue weighting in the singleton vs geminate contrast in Lebanese Arabic: The case of fricative consonants.
    Al-Tamimi J; Khattab G
    J Acoust Soc Am; 2015 Jul; 138(1):344-60. PubMed ID: 26233034
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acoustic and speaker variation in Dutch /n/ and /m/ as a function of phonetic context and syllabic position.
    Smorenburg L; Heeren W
    J Acoust Soc Am; 2021 Aug; 150(2):979. PubMed ID: 34470278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automatic Voice Pathology Detection With Running Speech by Using Estimation of Auditory Spectrum and Cepstral Coefficients Based on the All-Pole Model.
    Ali Z; Elamvazuthi I; Alsulaiman M; Muhammad G
    J Voice; 2016 Nov; 30(6):757.e7-757.e19. PubMed ID: 26522263
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Empirical test of the performance of an acoustic-phonetic approach to forensic voice comparison under conditions similar to those of a real case.
    Enzinger E; Morrison GS
    Forensic Sci Int; 2017 Aug; 277():30-40. PubMed ID: 28575731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A reconsideration of acoustic invariance for place of articulation in diffuse stop consonants: evidence from a cross-language study.
    Lahiri A; Gewirth L; Blumstein SE
    J Acoust Soc Am; 1984 Aug; 76(2):391-404. PubMed ID: 6480990
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acoustic analysis and perception of Spanish fricative consonants.
    de Manrique AM; Massone MI
    J Acoust Soc Am; 1981 Apr; 69(4):1145-53. PubMed ID: 7229202
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of voicing and articulation manner on aerosol particle emission during human speech.
    Asadi S; Wexler AS; Cappa CD; Barreda S; Bouvier NM; Ristenpart WD
    PLoS One; 2020; 15(1):e0227699. PubMed ID: 31986165
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pharyngeal articulation in the production of voiced and voiceless fricatives.
    Proctor MI; Shadle CH; Iskarous K
    J Acoust Soc Am; 2010 Mar; 127(3):1507-18. PubMed ID: 20329851
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acoustic analyses of infant fricative and trill vocalizations.
    Bauer HR; Kent RD
    J Acoust Soc Am; 1987 Feb; 81(2):505-11. PubMed ID: 3558968
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sex-related acoustic changes in voiceless English fricatives.
    Fox RA; Nissen SL
    J Speech Lang Hear Res; 2005 Aug; 48(4):753-65. PubMed ID: 16378471
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Source characteristics of voiceless dorsal fricatives.
    Redmon C; Jongman A
    J Acoust Soc Am; 2018 Jul; 144(1):242. PubMed ID: 30075652
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.