These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 11387041)

  • 1. Morpholino antisense oligonucleotides: tools for investigating vertebrate development.
    Corey DR; Abrams JM
    Genome Biol; 2001; 2(5):REVIEWS1015. PubMed ID: 11387041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morpholino oligos: making sense of antisense?
    Heasman J
    Dev Biol; 2002 Mar; 243(2):209-14. PubMed ID: 11884031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of developmental phenotypes produced by morpholino antisense targeting of a sea urchin Runx gene.
    Coffman JA; Dickey-Sims C; Haug JS; McCarthy JJ; Robertson AJ
    BMC Biol; 2004 May; 2():6. PubMed ID: 15132741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting gene expression in the preimplantation mouse embryo using morpholino antisense oligonucleotides.
    Siddall LS; Barcroft LC; Watson AJ
    Mol Reprod Dev; 2002 Dec; 63(4):413-21. PubMed ID: 12412042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microinjection of mRNA and morpholino antisense oligonucleotides in zebrafish embryos.
    Yuan S; Sun Z
    J Vis Exp; 2009 May; (27):. PubMed ID: 19488022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: a quantifiable method for gene knockdown.
    Draper BW; Morcos PA; Kimmel CB
    Genesis; 2001 Jul; 30(3):154-6. PubMed ID: 11477696
    [No Abstract]   [Full Text] [Related]  

  • 7. Use of fully modified 2'-O-methyl antisense oligos for loss-of-function studies in vertebrate embryos.
    Schneider PN; Olthoff JT; Matthews AJ; Houston DW
    Genesis; 2011 Mar; 49(3):117-23. PubMed ID: 21442720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Essential and opposing roles of zebrafish beta-catenins in the formation of dorsal axial structures and neurectoderm.
    Bellipanni G; Varga M; Maegawa S; Imai Y; Kelly C; Myers AP; Chu F; Talbot WS; Weinberg ES
    Development; 2006 Apr; 133(7):1299-309. PubMed ID: 16510506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alx1, a member of the Cart1/Alx3/Alx4 subfamily of Paired-class homeodomain proteins, is an essential component of the gene network controlling skeletogenic fate specification in the sea urchin embryo.
    Ettensohn CA; Illies MR; Oliveri P; De Jong DL
    Development; 2003 Jul; 130(13):2917-28. PubMed ID: 12756175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microinjection of morpholino oligos and RNAs in sea squirt (Ciona) embryos.
    Christiaen L; Wagner E; Shi W; Levine M
    Cold Spring Harb Protoc; 2009 Dec; 2009(12):pdb.prot5347. PubMed ID: 20150094
    [No Abstract]   [Full Text] [Related]  

  • 11. Quantitative assessment of the knockdown efficiency of morpholino antisense oligonucleotides in zebrafish embryos using a luciferase assay.
    Kamachi Y; Okuda Y; Kondoh H
    Genesis; 2008 Jan; 46(1):1-7. PubMed ID: 18196596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A role for the transcription intermediary factor 2 in zebrafish myelopoiesis.
    Zhuravleva J; Solary E; Chluba J; Bastie JN; Delva L
    Exp Hematol; 2008 May; 36(5):559-67. PubMed ID: 18295965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hypoplastic retinal lamination in the purpurin knock down embryo in zebrafish.
    Nagashima M; Saito J; Mawatari K; Mori Y; Matsukawa T; Koriyama Y; Kato S
    Adv Exp Med Biol; 2010; 664():517-24. PubMed ID: 20238054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CNBP mediates neural crest cell expansion by controlling cell proliferation and cell survival during rostral head development.
    Weiner AM; Allende ML; Becker TS; Calcaterra NB
    J Cell Biochem; 2007 Dec; 102(6):1553-70. PubMed ID: 17471504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning, expression pattern and essentiality of the high-affinity copper transporter 1 (ctr1) gene in zebrafish.
    Mackenzie NC; Brito M; Reyes AE; Allende ML
    Gene; 2004 Mar; 328():113-20. PubMed ID: 15019990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The zebrafish as a novel system for functional genomics and therapeutic development applications.
    Nasevicius A; Ekker SC
    Curr Opin Mol Ther; 2001 Jun; 3(3):224-8. PubMed ID: 11497344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microinjection of zebrafish embryos to analyze gene function.
    Rosen JN; Sweeney MF; Mably JD
    J Vis Exp; 2009 Mar; (25):. PubMed ID: 19274045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studying cilia in zebrafish.
    Drummond I
    Methods Cell Biol; 2009; 93():197-217. PubMed ID: 20409819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conditional gene knockdowns in sea urchins using caged morpholinos.
    Bardhan A; Deiters A; Ettensohn CA
    Dev Biol; 2021 Jul; 475():21-29. PubMed ID: 33684434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining synphenotype groups in Xenopus tropicalis by use of antisense morpholino oligonucleotides.
    Rana AA; Collart C; Gilchrist MJ; Smith JC
    PLoS Genet; 2006 Nov; 2(11):e193. PubMed ID: 17112317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.