BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

604 related articles for article (PubMed ID: 11387331)

  • 1. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications.
    Griesbeck O; Baird GS; Campbell RE; Zacharias DA; Tsien RY
    J Biol Chem; 2001 Aug; 276(31):29188-94. PubMed ID: 11387331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystallographic and energetic analysis of binding of selected anions to the yellow variants of green fluorescent protein.
    Wachter RM; Yarbrough D; Kallio K; Remington SJ
    J Mol Biol; 2000 Aug; 301(1):157-71. PubMed ID: 10926499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein.
    Wachter RM; Elsliger MA; Kallio K; Hanson GT; Remington SJ
    Structure; 1998 Oct; 6(10):1267-77. PubMed ID: 9782051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expanded dynamic range of fluorescent indicators for Ca(2+) by circularly permuted yellow fluorescent proteins.
    Nagai T; Yamada S; Tominaga T; Ichikawa M; Miyawaki A
    Proc Natl Acad Sci U S A; 2004 Jul; 101(29):10554-9. PubMed ID: 15247428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism and cellular applications of a green fluorescent protein-based halide sensor.
    Jayaraman S; Haggie P; Wachter RM; Remington SJ; Verkman AS
    J Biol Chem; 2000 Mar; 275(9):6047-50. PubMed ID: 10692389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic and quantitative Ca2+ measurements using improved cameleons.
    Miyawaki A; Griesbeck O; Heim R; Tsien RY
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):2135-40. PubMed ID: 10051607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin.
    Miyawaki A; Llopis J; Heim R; McCaffery JM; Adams JA; Ikura M; Tsien RY
    Nature; 1997 Aug; 388(6645):882-7. PubMed ID: 9278050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Halide and proton binding kinetics of yellow fluorescent protein variants.
    Seward HE; Basran J; Denton R; Pfuhl M; Muskett FW; Bagshaw CR
    Biochemistry; 2013 Apr; 52(14):2482-91. PubMed ID: 23514090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circular permutated red fluorescent proteins and calcium ion indicators based on mCherry.
    Carlson HJ; Campbell RE
    Protein Eng Des Sel; 2013 Dec; 26(12):763-72. PubMed ID: 24151339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of venus, a yellow fluorescent protein with improved maturation and reduced environmental sensitivity.
    Rekas A; Alattia JR; Nagai T; Miyawaki A; Ikura M
    J Biol Chem; 2002 Dec; 277(52):50573-8. PubMed ID: 12370172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green fluorescent protein-based halide indicators with improved chloride and iodide affinities.
    Galietta LJ; Haggie PM; Verkman AS
    FEBS Lett; 2001 Jun; 499(3):220-4. PubMed ID: 11423120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational design of a pH-insensitive cyan fluorescent protein CyPet2 based on the CyPet crystal structure.
    Liu R; Hu XJ; Ding Y
    FEBS Lett; 2017 Jun; 591(12):1761-1769. PubMed ID: 28504316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring the intracellular free Ca(2+)-calmodulin concentration with genetically-encoded fluorescent indicator proteins.
    Persechini A
    Methods Mol Biol; 2002; 173():365-82. PubMed ID: 11859776
    [No Abstract]   [Full Text] [Related]  

  • 14. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications.
    Nagai T; Ibata K; Park ES; Kubota M; Mikoshiba K; Miyawaki A
    Nat Biotechnol; 2002 Jan; 20(1):87-90. PubMed ID: 11753368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence resonance energy transfer reports properties of syntaxin1a interaction with Munc18-1 in vivo.
    Liu J; Ernst SA; Gladycheva SE; Lee YY; Lentz SI; Ho CS; Li Q; Stuenkel EL
    J Biol Chem; 2004 Dec; 279(53):55924-36. PubMed ID: 15489225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of the green fluorescent protein NowGFP with an anionic tryptophan-based chromophore.
    Pletnev VZ; Pletneva NV; Sarkisyan KS; Mishin AS; Lukyanov KA; Goryacheva EA; Ziganshin RH; Dauter Z; Pletnev S
    Acta Crystallogr D Biol Crystallogr; 2015 Aug; 71(Pt 8):1699-707. PubMed ID: 26249350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A genetically-encoded YFP sensor with enhanced chloride sensitivity, photostability and reduced ph interference demonstrates augmented transmembrane chloride movement by gerbil prestin (SLC26a5).
    Zhong S; Navaratnam D; Santos-Sacchi J
    PLoS One; 2014; 9(6):e99095. PubMed ID: 24901231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling of pressure-induced structural shifts to spectral changes in a yellow fluorescent protein.
    Barstow B; Ando N; Kim CU; Gruner SM
    Biophys J; 2009 Sep; 97(6):1719-27. PubMed ID: 19751677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Turning On and Off Photoinduced Electron Transfer in Fluorescent Proteins by π-Stacking, Halide Binding, and Tyr145 Mutations.
    Bogdanov AM; Acharya A; Titelmayer AV; Mamontova AV; Bravaya KB; Kolomeisky AB; Lukyanov KA; Krylov AI
    J Am Chem Soc; 2016 Apr; 138(14):4807-17. PubMed ID: 26999576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent Citrine-IgG fusion proteins produced in mammalian cells.
    Haas AK; von Schwerin C; Matscheko D; Brinkmann U
    MAbs; 2010; 2(6):648-61. PubMed ID: 20724830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.