These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 11387652)

  • 21. Development of videostrobokymography for the quantitative analysis of laryngeal vibratory pattern.
    Lee JS; Kim E; Park KS; Sung MY; Sung MW; Kim KH
    Stud Health Technol Inform; 1998; 52 Pt 2():1022-4. PubMed ID: 10384614
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design of a mechanical larynx with agarose as a soft tissue substitute for vocal fold applications.
    Choo JQ; Lau DP; Chui CK; Yang T; Chng CB; Teoh SH
    J Biomech Eng; 2010 Jun; 132(6):065001. PubMed ID: 20887039
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nonlinear behavior of vocal fold vibration: the role of coupling between the vocal folds.
    Giovanni A; Ouaknine M; Guelfucci R; Yu T; Zanaret M; Triglia JM
    J Voice; 1999 Dec; 13(4):465-76. PubMed ID: 10622513
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [The oscillo-impedance concept of laryngeal vibration].
    Dejonckere PH
    Rev Laryngol Otol Rhinol (Bord); 1985; 106(4):275-82. PubMed ID: 3832226
    [No Abstract]   [Full Text] [Related]  

  • 25. Extracting physiologically relevant parameters of vocal folds from high-speed video image series.
    Tao C; Zhang Y; Jiang JJ
    IEEE Trans Biomed Eng; 2007 May; 54(5):794-801. PubMed ID: 17518275
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Videostrobokymography: a new method for the quantitative analysis of vocal fold vibration.
    Sung MW; Kim KH; Koh TY; Kwon TY; Mo JH; Choi SH; Lee JS; Park KS; Kim EJ; Sung MY
    Laryngoscope; 1999 Nov; 109(11):1859-63. PubMed ID: 10569423
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of strain field on the superior surface of excised larynx vocal folds using DIC.
    Bakhshaee H; Young J; Yang JC; Mongeau L; Miri AK
    J Voice; 2013 Nov; 27(6):659-67. PubMed ID: 24070590
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Typing vocal fold vibratory patterns in excised larynx experiments via digital kymography.
    Zhang Y; Krausert CR; Kelly MP; Jiang JJ
    Ann Otol Rhinol Laryngol; 2009 Aug; 118(8):598-605. PubMed ID: 19746760
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vibration parameter extraction from endoscopic image series of the vocal folds.
    Döllinger M; Hoppe U; Hettlich F; Lohscheller J; Schuberth S; Eysholdt U
    IEEE Trans Biomed Eng; 2002 Aug; 49(8):773-81. PubMed ID: 12148815
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lubrication mechanism of the larynx during phonation: an experiment in excised canine larynges.
    Nakagawa H; Fukuda H; Kawaida M; Shiotani A; Kanzaki J
    Folia Phoniatr Logop; 1998; 50(4):183-94. PubMed ID: 9819480
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A quantitative study of the medial surface dynamics of an in vivo canine vocal fold during phonation.
    Doellinger M; Berry DA; Berke GS
    Laryngoscope; 2005 Sep; 115(9):1646-54. PubMed ID: 16148711
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Discovery of a low frequency sound source in Mysticeti (baleen whales): anatomical establishment of a vocal fold homolog.
    Reidenberg JS; Laitman JT
    Anat Rec (Hoboken); 2007 Jun; 290(6):745-59. PubMed ID: 17516447
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Laryngeal mechanisms during human 4-kHz vocalization studied with CT, videostroboscopy, and color Doppler imaging.
    Tsai CG; Shau YW; Liu HM; Hsiao TY
    J Voice; 2008 May; 22(3):275-82. PubMed ID: 17509826
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of biomechanical modeling of register transitions and voice instabilities with excised larynx experiments.
    Tokuda IT; Horácek J; Svec JG; Herzel H
    J Acoust Soc Am; 2007 Jul; 122(1):519-31. PubMed ID: 17614509
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A theoretical study of F0-F1 interaction with application to resonant speaking and singing voice.
    Titze IR
    J Voice; 2004 Sep; 18(3):292-8. PubMed ID: 15331101
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studying vocal fold vibrations in Parkinson's disease with a nonlinear model.
    Zhang Y; Jiang J; Rahn DA
    Chaos; 2005 Sep; 15(3):33903. PubMed ID: 16252994
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic movement of air tract fluid in lubrication of the larynx during phonation: a basic study using excised canine larynges and experimental air tract fluid by means of X-ray stroboscope system.
    Kawaida M; Fukuda H; Kano S; Shiotani A; Kohno N
    Auris Nasus Larynx; 1990; 16(4):237-43. PubMed ID: 2360887
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computation of the three-dimensional medial surface dynamics of the vocal folds.
    Döllinger M; Berry DA
    J Biomech; 2006; 39(2):369-74. PubMed ID: 16321641
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [The influence of changes in vocal cords' cover-body on their vibratory pattern].
    Yang X; Lei K
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1998 Dec; 33(6):334-7. PubMed ID: 11938842
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chaos in voice, from modeling to measurement.
    Jiang JJ; Zhang Y; McGilligan C
    J Voice; 2006 Mar; 20(1):2-17. PubMed ID: 15964740
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.