These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 11388366)

  • 1. Vibrissectomy during early ontogenesis in rats disturbs the functional properties of cortical projection neurons.
    Sitnikova EY
    Neurosci Behav Physiol; 2001; 31(2):153-6. PubMed ID: 11388366
    [No Abstract]   [Full Text] [Related]  

  • 2. [Vibrissectomy in rats in early ontogeny leads to disordered functional properties of the cortical projection neurons].
    Sitnikova EIu
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2000; 50(1):137-41. PubMed ID: 10750198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The effect of early sensory experience on development of neuron functional properties in the area of vibrissal projection in the rat neocortex].
    Sitnikova EIu
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2010; 60(6):719-29. PubMed ID: 21434408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overlap of sensory representations in rat barrel cortex after neonatal vibrissectomy.
    Kossut M; Siucińska E
    Acta Neurobiol Exp (Wars); 1996; 56(2):499-505. PubMed ID: 8768299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Afferent inhibition and the functional properties of neurons in the projection zone of the whiskers in the somatosensory cortex of the cat.
    Aleksandrov AA
    Neurosci Behav Physiol; 2000; 30(6):611-5. PubMed ID: 11127787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local functional state differences between rat cortical columns.
    Rector DM; Topchiy IA; Carter KM; Rojas MJ
    Brain Res; 2005 Jun; 1047(1):45-55. PubMed ID: 15882842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological analysis of the formation of the clustered organization of neurons forming corticocortical connections in the visual cortex of the cat during early post-natal ontogenesis.
    Makarov FN; Markova LA; Granstrem EE
    Neurosci Behav Physiol; 2002; 32(6):573-5. PubMed ID: 12469882
    [No Abstract]   [Full Text] [Related]  

  • 8. Involvement of trigeminal mesencephalic nucleus in kinetic encoding of whisker movements.
    Mameli O; Stanzani S; Russo A; Pellitteri R; Manca P; De Riu PL; Caria MA
    Brain Res Bull; 2014 Mar; 102():37-45. PubMed ID: 24518654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortex is driven by weak but synchronously active thalamocortical synapses.
    Bruno RM; Sakmann B
    Science; 2006 Jun; 312(5780):1622-7. PubMed ID: 16778049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localized dynamic changes in cortical blood flow with whisker stimulation corresponds to matched vascular and neuronal architecture of rat barrels.
    Cox SB; Woolsey TA; Rovainen CM
    J Cereb Blood Flow Metab; 1993 Nov; 13(6):899-913. PubMed ID: 8408316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-whisker adaptation of neurons in the rat barrel cortex.
    Katz Y; Heiss JE; Lampl I
    J Neurosci; 2006 Dec; 26(51):13363-72. PubMed ID: 17182787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The role of GABAA and GABAB receptors in formation of evoked potentials in the barrel cortex of rats].
    Matukhno AE; Sukhov AG; Sinitsyna VV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2012; 62(3):372-82. PubMed ID: 22891583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical neurons and networks are dormant but fully responsive during isoelectric brain state.
    Altwegg-Boussac T; Schramm AE; Ballestero J; Grosselin F; Chavez M; Lecas S; Baulac M; Naccache L; Demeret S; Navarro V; Mahon S; Charpier S
    Brain; 2017 Sep; 140(9):2381-2398. PubMed ID: 29050394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early frequency-dependent information processing and cortical control in the whisker pathway of the rat: electrophysiological study of brainstem nuclei principalis and interpolaris.
    Sanchez-Jimenez A; Panetsos F; Murciano A
    Neuroscience; 2009 Apr; 160(1):212-26. PubMed ID: 19409209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient and steady-state dynamics of cortical adaptation.
    Webber RM; Stanley GB
    J Neurophysiol; 2006 May; 95(5):2923-32. PubMed ID: 16467421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane potential changes in rat SmI cortical neurons evoked by controlled stimulation of mystacial vibrissae.
    Carvell GE; Simons DJ
    Brain Res; 1988 May; 448(1):186-91. PubMed ID: 3390715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Lemniscal and paralemniscal afferent pathways in rodents' trigeminal system are integrated at the level of the somatosensory cortex].
    Sitnikova EIu; Raevskiĭ VV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2009; 59(1):98-106. PubMed ID: 19338254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time course for the reappearance of vibrissal motor representation following botulinum toxin injection into the vibrissal pad of the adult rat.
    Franchi G; Veronesi C
    Eur J Neurosci; 2004 Oct; 20(7):1873-84. PubMed ID: 15380009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alterations in functional thalamocortical connectivity following neonatal whisker trimming with adult regrowth.
    Simons DJ; Carvell GE; Kyriazi HT
    J Neurophysiol; 2015 Sep; 114(3):1912-22. PubMed ID: 26245317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation between Cortical State and Locus Coeruleus Activity: Implications for Sensory Coding in Rat Barrel Cortex.
    Fazlali Z; Ranjbar-Slamloo Y; Adibi M; Arabzadeh E
    Front Neural Circuits; 2016; 10():14. PubMed ID: 27047339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.