These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 11388457)

  • 1. Identification of 2,3-dihydro-gamma-ionylideneethanol in Cercospora cruenta.
    Yamamoto H; Inomata M; Uchiyama T; Oritani T
    Biosci Biotechnol Biochem; 2001 Apr; 65(4):810-6. PubMed ID: 11388457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early biosynthetic pathway to abscisic acid in Cercospora cruenta.
    Yamamoto H; Inomata M; Tsuchiya S; Nakamura M; Uchiyama T; Oritani T
    Biosci Biotechnol Biochem; 2000 Oct; 64(10):2075-82. PubMed ID: 11129578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of Farnesyl Pyrophosphate Derivertives into Abscisic Acid and Its Biosynthetic Intermediates in Cevcospova cruenta.
    Yamamoto H; Oritani T
    Biosci Biotechnol Biochem; 1997 Jan; 61(5):821-824. PubMed ID: 28862567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of chiral ionylideneacetic acids on the abscisic acid biosynthetic pathway in Cercospora.
    Yamamoto H; Inomata M; Tsuchiya S; Nakamura M; Oritani T
    Biosci Biotechnol Biochem; 2000 Dec; 64(12):2644-50. PubMed ID: 11210128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational Analysis of Abscisic Acid Analogs Produced by Cercospora cruenta.
    Yamamoto H; Sugiyama T; Oritani T
    Biosci Biotechnol Biochem; 1996 Jan; 60(5):750-4. PubMed ID: 27281136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of abscisic acid by the direct pathway via ionylideneethane in a fungus, Cercospora cruenta.
    Inomata M; Hirai N; Yoshida R; Ohigashi H
    Biosci Biotechnol Biochem; 2004 Dec; 68(12):2571-80. PubMed ID: 15618629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereochemistry and synthetic applications of products of fermentation of alpha,beta-unsaturated aromatic aldehydes by baker's yeast.
    Fuganti C; Grasselli P
    Ciba Found Symp; 1985; 111():112-27. PubMed ID: 3893937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study on volatile organic compounds (VOCs) produced by tropical ascomycetous yeasts.
    Buzzini P; Martini A; Cappelli F; Pagnoni UM; Davoli P
    Antonie Van Leeuwenhoek; 2003; 84(4):301-11. PubMed ID: 14574107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aroma Profile Characterization of Mahi-Mahi and Tuna for Determining Spoilage Using Purge and Trap Gas Chromatography-Mass Spectrometry.
    Bai J; Baker SM; Goodrich-Schneider RM; Montazeri N; Sarnoski PJ
    J Food Sci; 2019 Mar; 84(3):481-489. PubMed ID: 30775780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of dihydro-β-ionone as a key aroma compound in addition to C8 ketones and alcohols in Volvariella volvacea mushroom.
    Xu X; Xu R; Jia Q; Feng T; Huang Q; Ho CT; Song S
    Food Chem; 2019 Sep; 293():333-339. PubMed ID: 31151620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2-(2,3-Dihydro-1H-indol-3-yl)ethanol: synthesis, separation of enantiomers, and assignment of absolute stereochemistry by X-ray structure analysis.
    Frydenvang K; Sommer MB; Heckmann D; Nielsen O; Bang-Andersen B
    Chirality; 2004 Feb; 16(2):126-30. PubMed ID: 14712476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chirality and biosynthesis of lilac compounds in Actinidia arguta flowers.
    Matich AJ; Bunn BJ; Comeskey DJ; Hunt MB; Rowan DD
    Phytochemistry; 2007 Jul; 68(13):1746-51. PubMed ID: 17466345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemoenzymatic synthesis of aroma active 5,6-dihydro- and tetrahydropyrazines from aliphatic acyloins produced by baker's yeast.
    Kurniadi T; Bel Rhlid R; Fay LB; Juillerat MA; Berger RG
    J Agric Food Chem; 2003 May; 51(10):3103-7. PubMed ID: 12720399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New chiral thiophene-salen chromium complexes for the asymmetric Henry reaction.
    Zulauf A; Mellah M; Schulz E
    J Org Chem; 2009 Mar; 74(5):2242-5. PubMed ID: 19209873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural elucidation of twelve novel esters composed of five fatty acids and three new branched alcohols together with four monoterpenoids from Sancassania shanghaiensis (Acari: Acaridae).
    Sakata T; Okabe K; Kuwahara Y
    Biosci Biotechnol Biochem; 2001 Apr; 65(4):919-27. PubMed ID: 11388473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and structural elucidation of a new cyclohexenone compound from Lasiodiplodia theobromae.
    Kitaoka N; Nabeta K; Matsuura H
    Biosci Biotechnol Biochem; 2009 Aug; 73(8):1890-2. PubMed ID: 19661717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolomic study of the fever model induced by baker's yeast and the antipyretic effects of aspirin in rats using nuclear magnetic resonance and gas chromatography-mass spectrometry.
    Zhang F; Wang D; Li X; Li Z; Chao J; Qin X
    J Pharm Biomed Anal; 2013; 81-82():168-77. PubMed ID: 23670098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, structure elucidation, and olfactometric analysis of lilac aldehyde and lilac alcohol stereoisomers.
    Kreck M; Mosandl A
    J Agric Food Chem; 2003 Apr; 51(9):2722-6. PubMed ID: 12696963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of octadienal in the marine diatom Skeletonema costatum.
    D'Ippolito G; Romano G; Caruso T; Spinella A; Cimino G; Fontana A
    Org Lett; 2003 Mar; 5(6):885-7. PubMed ID: 12633097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMDA-NR2B subtype selectivity of stereoisomeric 2-(1,2,3,4-tetrahydro-1-isoquinolyl)ethanol derivatives.
    Höfner G; Hoesl CE; Parsons C; Quack G; Wanner KT
    Bioorg Med Chem Lett; 2005 May; 15(9):2231-4. PubMed ID: 15837299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.