These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 1138862)
1. Effect of selected anions and solvents on the electron absorption, nuclear magnetic resonance, and infrared spectra of the N-retinylidene-n-butylammonium cation. Blatz PE; Mohler JH Biochemistry; 1975 Jun; 14(11):2304-9. PubMed ID: 1138862 [TBL] [Abstract][Full Text] [Related]
2. Effect of selected hydrogen-bonding solvents on the absorption maxima of N-retinylidene-n-butylammonium salts. Blatz PE; Mohler JH Biochemistry; 1972 Aug; 11(17):3240-3. PubMed ID: 5048286 [No Abstract] [Full Text] [Related]
3. Spectroscopic observation of solvent interaction with selected retinal Schiff bases. Blatz PE; Mohler JH; Ahmed W Photochem Photobiol; 1991 Aug; 54(2):255-64. PubMed ID: 1780362 [TBL] [Abstract][Full Text] [Related]
4. Structure dependent prototropy in 4-hydroxy-3-formylideneamino-1-methyl/phenylquinolin-2-ones. Reddy TS; Rameshwar N; Bhudevi B; Reddy AR Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 73(5):916-21. PubMed ID: 19477678 [TBL] [Abstract][Full Text] [Related]
5. The role of the retinylidene Schiff base counterion in rhodopsin in determining wavelength absorbance and Schiff base pKa. Sakmar TP; Franke RR; Khorana HG Proc Natl Acad Sci U S A; 1991 Apr; 88(8):3079-83. PubMed ID: 2014228 [TBL] [Abstract][Full Text] [Related]
6. Anion-protein interactions during halorhodopsin pumping: halide binding at the protonated Schiff base. Walter TJ; Braiman MS Biochemistry; 1994 Feb; 33(7):1724-33. PubMed ID: 8110775 [TBL] [Abstract][Full Text] [Related]
7. Effect of Structure on Charge Distribution in the Isatin Anions in Aprotic Environment: Spectral Study. Tisovský P; Šandrik R; Horváth M; Donovalová J; Filo J; Gáplovský M; Jakusová K; Cigáň M; Sokolík R; Gáplovský A Molecules; 2017 Nov; 22(11):. PubMed ID: 29135954 [TBL] [Abstract][Full Text] [Related]
8. UV-vis, IR and (1)H NMR spectroscopic studies of some Schiff bases derivatives of 4-aminoantipyrine. Issa RM; Khedr AM; Rizk HF Spectrochim Acta A Mol Biomol Spectrosc; 2005 Nov; 62(1-3):621-9. PubMed ID: 16257767 [TBL] [Abstract][Full Text] [Related]
9. Solid-state 13C and 15N NMR study of the low pH forms of bacteriorhodopsin. de Groot HJ; Smith SO; Courtin J; van den Berg E; Winkel C; Lugtenburg J; Griffin RG; Herzfeld J Biochemistry; 1990 Jul; 29(29):6873-83. PubMed ID: 2168744 [TBL] [Abstract][Full Text] [Related]
10. Relative ground and excited state energies of CH3(CH = CH)5CH = NC4H9, its hydrogen-bonded and proton-transferred species, and charge partitioning and distribution in the protonated Schiff base of retinal. Blatz PE; Tompkins JA Photochem Photobiol; 1993 Sep; 58(3):400-8. PubMed ID: 8234475 [TBL] [Abstract][Full Text] [Related]
11. FTIR spectroscopy of the all-trans form of Anabaena sensory rhodopsin at 77 K: hydrogen bond of a water between the Schiff base and Asp75. Furutani Y; Kawanabe A; Jung KH; Kandori H Biochemistry; 2005 Sep; 44(37):12287-96. PubMed ID: 16156642 [TBL] [Abstract][Full Text] [Related]
12. Solvent and H/D isotope effects on the proton transfer pathways in heteroconjugated hydrogen-bonded phenol-carboxylic acid anions observed by combined UV-vis and NMR spectroscopy. Koeppe B; Guo J; Tolstoy PM; Denisov GS; Limbach HH J Am Chem Soc; 2013 May; 135(20):7553-66. PubMed ID: 23607931 [TBL] [Abstract][Full Text] [Related]
13. Ultrafast excited state dynamics of the protonated Schiff base of all-trans retinal in solvents. Zgrablić G; Voïtchovsky K; Kindermann M; Haacke S; Chergui M Biophys J; 2005 Apr; 88(4):2779-88. PubMed ID: 15792984 [TBL] [Abstract][Full Text] [Related]
14. A vibrational analysis of rhodopsin and bacteriorhodopsin chromophore analogues: resonance Raman and infrared spectroscopy of chemically modified retinals and Schiff bases. Cookingham RE; Lewis A; Lemley AT Biochemistry; 1978 Oct; 17(22):4699-711. PubMed ID: 728379 [TBL] [Abstract][Full Text] [Related]
15. Effects of solvent and substituent on the electronic absorption spectra of some substituted Schiff bases: a chemometrics study. Hemmateenejad B; Yazdani M; Sharghi H Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jun; 91():198-205. PubMed ID: 22381791 [TBL] [Abstract][Full Text] [Related]
16. Structural changes in bacteriorhodopsin following retinal photoisomerization from the 13-cis form. Mizuide N; Shibata M; Friedman N; Sheves M; Belenky M; Herzfeld J; Kandori H Biochemistry; 2006 Sep; 45(35):10674-81. PubMed ID: 16939219 [TBL] [Abstract][Full Text] [Related]
17. Retinal Schiff base chromophore in the surfactant solubilised water pools in CCl4. Singh AK; Aruna RV Biochim Biophys Acta; 1995 Oct; 1245(2):167-72. PubMed ID: 7492573 [TBL] [Abstract][Full Text] [Related]
19. The Schiff base bond configuration in bacteriorhodopsin and in model compounds. Livnah N; Sheves M Biochemistry; 1993 Jul; 32(28):7223-8. PubMed ID: 8343511 [TBL] [Abstract][Full Text] [Related]
20. Quantum chemical calculations and interpretation of electronic transitions and spectroscopic characteristics belonging to 1-(3-Mesityl-3-methylcyclobutyl)-2-(naphthalene-1-yloxy)ethanone. Koca M; Arici C; Muglu H; Vurdu CD; Kandemirli F; Zalaoglu Y; Yildirim G Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():899-912. PubMed ID: 25280338 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]