These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 1138862)

  • 21. Anion sensitivity and spectral tuning of cone visual pigments in situ.
    Kleinschmidt J; Harosi FI
    Proc Natl Acad Sci U S A; 1992 Oct; 89(19):9181-5. PubMed ID: 1409622
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultra-high-field MAS NMR assay of a multispin labeled ligand bound to its G-protein receptor target in the natural membrane environment: electronic structure of the retinylidene chromophore in rhodopsin.
    Verhoeven MA; Creemers AF; Bovee-Geurts PH; De Grip WJ; Lugtenburg J; de Groot HJ
    Biochemistry; 2001 Mar; 40(11):3282-8. PubMed ID: 11258947
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of phototransduction in short-wavelength cone visual pigments via the retinylidene Schiff base counterion.
    Babu KR; Dukkipati A; Birge RR; Knox BE
    Biochemistry; 2001 Nov; 40(46):13760-6. PubMed ID: 11705364
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The nature of the H3O+ hydronium ion in benzene and chlorinated hydrocarbon solvents. Conditions of existence and reinterpretation of infrared data.
    Stoyanov ES; Kim KC; Reed CA
    J Am Chem Soc; 2006 Feb; 128(6):1948-58. PubMed ID: 16464096
    [TBL] [Abstract][Full Text] [Related]  

  • 25. FTIR studies of the photoactivation processes in squid retinochrome.
    Furutani Y; Terakita A; Shichida Y; Kandori H
    Biochemistry; 2005 Jun; 44(22):7988-97. PubMed ID: 15924417
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nuclear magnetic resonance study of the Schiff base in bacteriorhodopsin: counterion effects on the 15N shift anisotropy.
    de Groot HJ; Harbison GS; Herzfeld J; Griffin RG
    Biochemistry; 1989 Apr; 28(8):3346-53. PubMed ID: 2742840
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Visual-pigment spectra: implications of the protonation of the retinal Schiff base.
    Honig B; Greenberg AD; Dinur U; Ebrey TG
    Biochemistry; 1976 Oct; 15(21):4593-9. PubMed ID: 974079
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Threonine-89 participates in the active site of bacteriorhodopsin: evidence for a role in color regulation and Schiff base proton transfer.
    Russell TS; Coleman M; Rath P; Nilsson A; Rothschild KJ
    Biochemistry; 1997 Jun; 36(24):7490-7. PubMed ID: 9200698
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermodynamics of proton transfer in carboxylic acid-retinal Schiff base hydrogen bonds with large proton polarizability.
    Merz H; Zundel G
    Biochem Biophys Res Commun; 1986 Jul; 138(2):819-25. PubMed ID: 3017339
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromophore-anion interactions in halorhodopsin from Natronobacterium pharaonis probed by time-resolved resonance Raman spectroscopy.
    Gerscher S; Mylrajan M; Hildebrandt P; Baron MH; Müller R; Engelhard M
    Biochemistry; 1997 Sep; 36(36):11012-20. PubMed ID: 9283093
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Light-dependent transducin activation by an ultraviolet-absorbing rhodopsin mutant.
    Fahmy K; Sakmar TP
    Biochemistry; 1993 Sep; 32(35):9165-71. PubMed ID: 8396426
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Octopus photoreceptor membranes. Surface charge density and pK of the Schiff base of the pigments.
    Koutalos Y; Ebrey TG; Gilson HR; Honig B
    Biophys J; 1990 Aug; 58(2):493-501. PubMed ID: 2207250
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DFT based ESIPT process of luminescent chemosensor: Taft and Catalan solvatochromism.
    Jayabharathi J; Thanikachalam V; Vennila M; Jayamoorthy K
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Sep; 95():589-95. PubMed ID: 22591800
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resonance Raman Study of an Anion Channelrhodopsin: Effects of Mutations near the Retinylidene Schiff Base.
    Yi A; Mamaeva N; Li H; Spudich JL; Rothschild KJ
    Biochemistry; 2016 Apr; 55(16):2371-80. PubMed ID: 27039989
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Light-Driven Proton, Sodium Ion, and Chloride Ion Transfer Mechanisms in Rhodopsins: SAC-CI Study.
    Miyahara T; Nakatsuji H
    J Phys Chem A; 2019 Mar; 123(9):1766-1784. PubMed ID: 30762358
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characteristic and spectroscopic properties of the Schiff-base model compounds.
    Jarzabek B; Kaczmarczyk B; Sek D
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Nov; 74(4):949-54. PubMed ID: 19748307
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis, characterization, structural analysis of metal(II) complexes of N'-[(E)-3-Bromo-5-Chloro-2-hydroxybenzidene]-4-hydroxybenzohydrazide-Multisubstituted Schiff base as a F(-) and Cu(2+) ions selective chemosensor.
    Sundar A; Prabhu M; Indra Gandhi N; Marappan M; Rajagopal G
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Aug; 129():509-18. PubMed ID: 24759756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electronic absorption spectra of benzoquinone and its hydroxy substituents and effect of solvents on their spectra.
    Ahmed M; Khan ZH
    Spectrochim Acta A Mol Biomol Spectrosc; 2000 Apr; 56(5):965-81. PubMed ID: 10809073
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Picosecond and nanosecond isomerization kinetics of protonated 11-cis retinylidene Schiff bases.
    Huppert D; Rentzepis PM; Kliger DS
    Photochem Photobiol; 1977 Feb; 25(2):193-7. PubMed ID: 866452
    [No Abstract]   [Full Text] [Related]  

  • 40. Vibrational frequency and dipolar orientation of the protonated Schiff base in bacteriorhodopsin before and after photoisomerization.
    Kandori H; Belenky M; Herzfeld J
    Biochemistry; 2002 May; 41(19):6026-31. PubMed ID: 11993997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.