These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 11388728)
1. Development and calculation of an energy dependent normal brain tissue neutron RBE for evaluating neutron fields for BNCT. Woollard JE; Blue TE; Gupta N; Gahbauer RA Health Phys; 2001 Jun; 80(6):583-9. PubMed ID: 11388728 [TBL] [Abstract][Full Text] [Related]
2. Interaction between the biological effects of high- and low-LET radiation dose components in a mixed field exposure. Mason AJ; Giusti V; Green S; Munck af Rosenschöld P; Beynon TD; Hopewell JW Int J Radiat Biol; 2011 Dec; 87(12):1162-72. PubMed ID: 21923301 [TBL] [Abstract][Full Text] [Related]
3. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors. Blue TE; Yanch JC J Neurooncol; 2003; 62(1-2):19-31. PubMed ID: 12749700 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of the relative biological effectiveness of a clinical epithermal neutron beam using dog brain. Benczik J; Seppälä T; Snellman M; Joensuu H; Morris GM; Hopewell JW Radiat Res; 2003 Feb; 159(2):199-209. PubMed ID: 12537525 [TBL] [Abstract][Full Text] [Related]
5. Relative biological effectiveness for epithermal neutron beam contaminated with fast neutrons in the linear accelerator-based boron neutron capture therapy system coupled to a solid-state lithium target. Nakamura S; Imamichi S; Shimada K; Takemori M; Kanai Y; Iijima K; Chiba T; Nakayama H; Nakaichi T; Mikasa S; Urago Y; Kashihara T; Takahashi K; Nishio T; Okamoto H; Itami J; Ishiai M; Suzuki M; Igaki H; Masutani M J Radiat Res; 2023 Jul; 64(4):661-667. PubMed ID: 37295954 [TBL] [Abstract][Full Text] [Related]
6. An expression for the RBE of neutrons as a function of neutron energy. Blue TE; Woollard JE; Gupta N; Greskovich JF Phys Med Biol; 1995 May; 40(5):757-67. PubMed ID: 7652006 [TBL] [Abstract][Full Text] [Related]
7. Experimentally determined relative biological effectiveness of cyclotron-based epithermal neutrons designed for clinical BNCT: in vitro study. Hu N; Suzuki M; Masunaga SI; Kashino G; Kinashi Y; Chen YW; Liu Y; Uehara K; Mitsumoto T; Tanaka H; Ono K J Radiat Res; 2023 Sep; 64(5):811-815. PubMed ID: 37607589 [TBL] [Abstract][Full Text] [Related]
8. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments. Miller ME; Sztejnberg ML; González SJ; Thorp SI; Longhino JM; Estryk G Med Phys; 2011 Dec; 38(12):6502-12. PubMed ID: 22149833 [TBL] [Abstract][Full Text] [Related]
9. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy. Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755 [TBL] [Abstract][Full Text] [Related]
10. Triple ionization chamber method for clinical dose monitoring with a Be-covered Li BNCT field. Nguyen TT; Kajimoto T; Tanaka K; Nguyen CC; Endo S Med Phys; 2016 Nov; 43(11):6049. PubMed ID: 27806584 [TBL] [Abstract][Full Text] [Related]
11. Microdosimetry study of THOR BNCT beam using tissue equivalent proportional counter. Hsu FY; Hsiao HW; Tung CJ; Liu HM; Chou FI Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S175-8. PubMed ID: 19447042 [TBL] [Abstract][Full Text] [Related]
13. A comparison of neutron beams for BNCT based on in-phantom neutron field assessment parameters. Woollard JE; Albertson BJ; Reed MK; Blue TE; Capala J; Gupta N; Gahbauer RA Med Phys; 2001 Feb; 28(2):184-93. PubMed ID: 11243342 [TBL] [Abstract][Full Text] [Related]
14. On the eptihermal neutron energy limit for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT): Study and impact of new energy limits. Hervé M; Sauzet N; Santos D Phys Med; 2021 Aug; 88():148-157. PubMed ID: 34265549 [TBL] [Abstract][Full Text] [Related]
15. Microdosimetric spectra of the THOR neutron beam for boron neutron capture therapy. Hsu FY; Tung CJ; Watt DE Radiat Prot Dosimetry; 2003; 104(2):121-6. PubMed ID: 12918789 [TBL] [Abstract][Full Text] [Related]
16. Accelerator-based epithermal neutron beam design for neutron capture therapy. Yanch JC; Zhou XL; Shefer RE; Klinkowstein RE Med Phys; 1992; 19(3):709-21. PubMed ID: 1324392 [TBL] [Abstract][Full Text] [Related]
17. Feasibility study on epithermal neutron field for cyclotron-based boron neutron capture therapy. Yonai S; Aoki T; Nakamura T; Yashima H; Baba M; Yokobori H; Tahara Y Med Phys; 2003 Aug; 30(8):2021-30. PubMed ID: 12945968 [TBL] [Abstract][Full Text] [Related]
18. A feasibility study of a deuterium-deuterium neutron generator-based boron neutron capture therapy system for treatment of brain tumors. Hsieh M; Liu Y; Mostafaei F; Poulson JM; Nie LH Med Phys; 2017 Feb; 44(2):637-643. PubMed ID: 28205309 [TBL] [Abstract][Full Text] [Related]
19. Derivations of relative biological effectiveness for the high-let radiations produced during boron neutron capture irradiations of the 9L rat gliosarcoma in vitro and in vivo. Coderre JA; Makar MS; Micca PL; Nawrocky MM; Liu HB; Joel DD; Slatkin DN; Amols HI Int J Radiat Oncol Biol Phys; 1993 Dec; 27(5):1121-9. PubMed ID: 8262837 [TBL] [Abstract][Full Text] [Related]
20. In-phantom dosimetry for the 13C(d,n)14N reaction as a source for accelerator-based BNCT. Burlon AA; Kreiner AJ; White SM; Blackburn BW; Gierga DP; Yanch JC Med Phys; 2001 May; 28(5):796-803. PubMed ID: 11393475 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]