These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 11388912)
1. Enhancement of the thermostability of thermophilic bacterium PS-3 PPase on substitution of Ser-89 with carboxylic amino acids. Wada M; Uchiumi T; Ichiba T; Hachimori A J Biochem; 2001 Jun; 129(6):955-61. PubMed ID: 11388912 [TBL] [Abstract][Full Text] [Related]
2. Effects of replacement of prolines with alanines on the catalytic activity and thermostability of inorganic pyrophosphatase from thermophilic bacterium PS-3. Masuda H; Uchiumi T; Wada M; Ichiba T; Hachimori A J Biochem; 2002 Jan; 131(1):53-8. PubMed ID: 11754735 [TBL] [Abstract][Full Text] [Related]
3. Effect of replacement of His-118, His-125 and Trp-143 by alanine on the catalytic activity and subunit assembly of inorganic pyrophosphatase from thermophilic bacterium PS-3. Aoki M; Uchiumi T; Tsuji E; Hachimori A Biochem J; 1998 Apr; 331 ( Pt 1)(Pt 1):143-8. PubMed ID: 9512472 [TBL] [Abstract][Full Text] [Related]
4. The extreme thermostable pyrophosphatase from Sulfolobus acidocaldarius: enzymatic and comparative biophysical characterization. Hansen T; Urbanke C; Leppänen VM; Goldman A; Brandenburg K; Schäfer G Arch Biochem Biophys; 1999 Mar; 363(1):135-47. PubMed ID: 10049508 [TBL] [Abstract][Full Text] [Related]
5. A chimeric inorganic pyrophosphatase derived from Escherichia coli and Thermus thermophilus has an increased thermostability. Satoh T; Takahashi Y; Oshida N; Shimizu A; Shinoda H; Watanabe M; Samejima T Biochemistry; 1999 Feb; 38(5):1531-6. PubMed ID: 9931019 [TBL] [Abstract][Full Text] [Related]
6. An unusual route to thermostability disclosed by the comparison of Thermus thermophilus and Escherichia coli inorganic pyrophosphatases. Salminen T; Teplyakov A; Kankare J; Cooperman BS; Lahti R; Goldman A Protein Sci; 1996 Jun; 5(6):1014-25. PubMed ID: 8762133 [TBL] [Abstract][Full Text] [Related]
7. Deletion of Ala144-Lys145 in Thermus thermophilus inorganic pyrophosphatase suppresses thermal aggregation. Satoh T; Oshida N; Ono M; Hattori M; Ohta T; Watanabe M; Shinoda H; Takahashi Y; Lee JS; Samejima T J Biochem; 1999 May; 125(5):858-63. PubMed ID: 10220575 [TBL] [Abstract][Full Text] [Related]
8. Sulfolobus acidocaldarius inorganic pyrophosphatase: structure, thermostability, and effect of metal ion in an archael pyrophosphatase. Leppänen VM; Nummelin H; Hansen T; Lahti R; Schäfer G; Goldman A Protein Sci; 1999 Jun; 8(6):1218-31. PubMed ID: 10386872 [TBL] [Abstract][Full Text] [Related]
9. Primary structure, expression, and site-directed mutagenesis of inorganic pyrophosphatase from Bacillus stearothermophilus. Satoh T; Shinoda H; Ishii K; Koyama M; Sakurai N; Kaji H; Hachimori A; Irie M; Samejima T J Biochem; 1999 Jan; 125(1):48-57. PubMed ID: 9880796 [TBL] [Abstract][Full Text] [Related]
10. A site-directed mutagenesis study on Escherichia coli inorganic pyrophosphatase. Glutamic acid-98 and lysine-104 are important for structural integrity, whereas aspartic acids-97 and -102 are essential for catalytic activity. Lahti R; Pohjanoksa K; Pitkäranta T; Heikinheimo P; Salminen T; Meyer P; Heinonen J Biochemistry; 1990 Jun; 29(24):5761-6. PubMed ID: 1974462 [TBL] [Abstract][Full Text] [Related]
11. Directed mutagenesis studies of the metal binding site at the subunit interface of Escherichia coli inorganic pyrophosphatase. Efimova IS; Salminen A; Pohjanjoki P; Lapinniemi J; Magretova NN; Cooperman BS; Goldman A; Lahti R; Baykov AA J Biol Chem; 1999 Feb; 274(6):3294-9. PubMed ID: 9920869 [TBL] [Abstract][Full Text] [Related]
12. Hydrophobic interactions of Val75 are critical for oligomeric thermostability of inorganic pyrophosphatase from Bacillus stearothermophilus. Shinoda H; Hattori M; Shimizu A; Samejima T; Satoh T J Biochem; 1999 Jan; 125(1):58-63. PubMed ID: 9880797 [TBL] [Abstract][Full Text] [Related]
15. Modulation of dimer stability in yeast pyrophosphatase by mutations at the subunit interface and ligand binding to the active site. Salminen A; Parfenyev AN; Salli K; Efimova IS; Magretova NN; Goldman A; Baykov AA; Lahti R J Biol Chem; 2002 May; 277(18):15465-71. PubMed ID: 11854292 [TBL] [Abstract][Full Text] [Related]
16. A hybrid mutant form of Escherichia coli inorganic pyrophosphatase. Velichko IS; Baykov AA Biochemistry (Mosc); 1997 Mar; 62(3):233-6. PubMed ID: 9275296 [TBL] [Abstract][Full Text] [Related]
17. Evolutionary conservation of enzymatic catalysis: quantitative comparison of the effects of mutation of aligned residues in Saccharomyces cerevisiae and Escherichia coli inorganic pyrophosphatases on enzymatic activity. Pohjanjoki P; Lahti R; Goldman A; Cooperman BS Biochemistry; 1998 Feb; 37(7):1754-61. PubMed ID: 9485300 [TBL] [Abstract][Full Text] [Related]
18. Effect of E20D substitution in the active site of Escherichia coli inorganic pyrophosphatase on its quaternary structure and catalytic properties. Volk SE; Dudarenkov VY; Käpylä J; Kasho VN; Voloshina OA; Salminen T; Goldman A; Lahti R; Baykov AA; Cooperman BS Biochemistry; 1996 Apr; 35(15):4662-9. PubMed ID: 8664255 [TBL] [Abstract][Full Text] [Related]
19. The role of Asp42 in Escherichia coli inorganic pyrophosphatase functioning. Rodina EV; Vainonen YP; Vorobyeva NN; Kurilova SA; Nazarova TI; Avaeva SM Eur J Biochem; 2001 Jul; 268(13):3851-7. PubMed ID: 11432753 [TBL] [Abstract][Full Text] [Related]
20. Subunit interaction of vacuolar H+-pyrophosphatase as determined by high hydrostatic pressure. Yang SJ; Ko SJ; Tsai YR; Jiang SS; Kuo SY; Hung SH; Pan RL Biochem J; 1998 Apr; 331 ( Pt 2)(Pt 2):395-402. PubMed ID: 9531476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]