BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 11389614)

  • 1. On the mechanism of alpha-helix to beta-sheet transition in the recombinant prion protein.
    Morillas M; Vanik DL; Surewicz WK
    Biochemistry; 2001 Jun; 40(23):6982-7. PubMed ID: 11389614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aggregation and fibrillization of the recombinant human prion protein huPrP90-231.
    Swietnicki W; Morillas M; Chen SG; Gambetti P; Surewicz WK
    Biochemistry; 2000 Jan; 39(2):424-31. PubMed ID: 10631004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly of recombinant prion protein of 106 residues.
    Baskakov IV; Aagaard C; Mehlhorn I; Wille H; Groth D; Baldwin MA; Prusiner SB; Cohen FE
    Biochemistry; 2000 Mar; 39(10):2792-804. PubMed ID: 10704232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disease-associated F198S mutation increases the propensity of the recombinant prion protein for conformational conversion to scrapie-like form.
    Vanik DL; Surewicz WK
    J Biol Chem; 2002 Dec; 277(50):49065-70. PubMed ID: 12372829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of disulfide bridge in the folding and stability of the recombinant human prion protein.
    Maiti NR; Surewicz WK
    J Biol Chem; 2001 Jan; 276(4):2427-31. PubMed ID: 11069909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation of isoforms of mouse prion protein with PrP(SC)-like structural properties.
    Lu BY; Chang JY
    Biochemistry; 2001 Nov; 40(44):13390-6. PubMed ID: 11683649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shaking alone induces de novo conversion of recombinant prion proteins to β-sheet rich oligomers and fibrils.
    Ladner-Keay CL; Griffith BJ; Wishart DS
    PLoS One; 2014; 9(6):e98753. PubMed ID: 24892647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folding and intrinsic stability of deletion variants of PrP(121-231), the folded C-terminal domain of the prion protein.
    Eberl H; Glockshuber R
    Biophys Chem; 2002 May; 96(2-3):293-303. PubMed ID: 12034448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osmolyte trimethylamine N-oxide converts recombinant alpha-helical prion protein to its soluble beta-structured form at high temperature.
    Nandi PK; Bera A; Sizaret PY
    J Mol Biol; 2006 Sep; 362(4):810-20. PubMed ID: 16949096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic scrapie infectivity: interaction between recombinant PrP and scrapie brain-derived RNA.
    Simoneau S; Thomzig A; Ruchoux MM; Vignier N; Daus ML; Poleggi A; Lebon P; Freire S; Durand V; Graziano S; Galeno R; Cardone F; Comoy E; Pocchiari M; Beekes M; Deslys JP; Fournier JG
    Virulence; 2015; 6(2):132-44. PubMed ID: 25585171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA and CuCl2 induced conformational changes of the recombinant ovine prion protein.
    Liu M; Yu S; Yang J; Yin X; Zhao D
    Mol Cell Biochem; 2007 Jan; 294(1-2):197-203. PubMed ID: 16855791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural intermediates in the putative pathway from the cellular prion protein to the pathogenic form.
    Jansen K; Schäfer O; Birkmann E; Post K; Serban H; Prusiner SB; Riesner D
    Biol Chem; 2001 Apr; 382(4):683-91. PubMed ID: 11405232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of critical oligomers is a key event during conformational transition of recombinant syrian hamster prion protein.
    Sokolowski F; Modler AJ; Masuch R; Zirwer D; Baier M; Lutsch G; Moss DA; Gast K; Naumann D
    J Biol Chem; 2003 Oct; 278(42):40481-92. PubMed ID: 12917432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folding intermediates of the prion protein stabilized by hydrostatic pressure and low temperature.
    Martins SM; Chapeaurouge A; Ferreira ST
    J Biol Chem; 2003 Dec; 278(50):50449-55. PubMed ID: 14525996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of disease-associated mutations on the folding pathway of human prion protein.
    Apetri AC; Surewicz K; Surewicz WK
    J Biol Chem; 2004 Apr; 279(17):18008-14. PubMed ID: 14761942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The peculiar nature of unfolding of the human prion protein.
    Baskakov IV; Legname G; Gryczynski Z; Prusiner SB
    Protein Sci; 2004 Mar; 13(3):586-95. PubMed ID: 14767078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A scrapie-like unfolding intermediate of the prion protein domain PrP(121-231) induced by acidic pH.
    Hornemann S; Glockshuber R
    Proc Natl Acad Sci U S A; 1998 May; 95(11):6010-4. PubMed ID: 9600908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Residue-specific mobility changes in soluble oligomers of the prion protein define regions involved in aggregation.
    Glaves JP; Ladner-Keay CL; Bjorndahl TC; Wishart DS; Sykes BD
    Biochim Biophys Acta Proteins Proteom; 2018 Sep; 1866(9):982-988. PubMed ID: 29935976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preventing misfolding of the prion protein by trimethylamine N-oxide.
    Bennion BJ; DeMarco ML; Daggett V
    Biochemistry; 2004 Oct; 43(41):12955-63. PubMed ID: 15476389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversibility of scrapie-associated prion protein aggregation.
    Callahan MA; Xiong L; Caughey B
    J Biol Chem; 2001 Jul; 276(30):28022-8. PubMed ID: 11375994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.