BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 11389669)

  • 21. Production of lipase in a fermentor using a mutant strain of Corynebacterium species: its partial purification and immobilization.
    Roy N; Ray L; Chattopadhyay P
    Indian J Exp Biol; 2004 Feb; 42(2):202-7. PubMed ID: 15282955
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alginate beads as an affinity material for alpha amylases.
    Sardar M; Gupta MN
    Bioseparation; 1998; 7(3):159-65. PubMed ID: 10036753
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The modulation of pancreatic lipase activity by alginates.
    Wilcox MD; Brownlee IA; Richardson JC; Dettmar PW; Pearson JP
    Food Chem; 2014 Mar; 146(100):479-84. PubMed ID: 24176371
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Free polymeric bioligands in aqueous two-phase affinity extractions of microbial xylanases and pullulanase.
    Teotia S; Lata R; Gupta MN
    Protein Expr Purif; 2001 Aug; 22(3):484-8. PubMed ID: 11483013
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alginate as immobilization matrix and stabilizing agent in a two-phase liquid system: application in lipase-catalysed reactions.
    Hertzberg S; Kvittingen L; Anthonsen T; Skjåk-Braek G
    Enzyme Microb Technol; 1992 Jan; 14(1):42-7. PubMed ID: 1367810
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparative study for lipase immobilization onto alginate based composite electrospun nanofibers with effective and enhanced stability.
    İspirli Doğaç Y; Deveci İ; Mercimek B; Teke M
    Int J Biol Macromol; 2017 Mar; 96():302-311. PubMed ID: 27932259
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient and rapid purification of lentil alpha-galactosidase by affinity precipitation with alginate.
    Celem EB; Bolle SS; Onal S
    Indian J Biochem Biophys; 2009 Oct; 46(5):366-70. PubMed ID: 20027865
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A bioconjugate of Pseudomonas cepacia lipase with alginate with enhanced catalytic efficiency.
    Mondal K; Mehta P; Mehta BR; Varandani D; Gupta MN
    Biochim Biophys Acta; 2006 Jun; 1764(6):1080-6. PubMed ID: 16765657
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation of core-shell magnetic polydopamine/alginate biocomposite for Candida rugosa lipase immobilization.
    Hou C; Qi Z; Zhu H
    Colloids Surf B Biointerfaces; 2015 Apr; 128():544-551. PubMed ID: 25784302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of superparamagnetic Fe3O4@alginate/chitosan nanospheres for Candida rugosa lipase immobilization and utilization of layer-by-layer assembly to enhance the stability of immobilized lipase.
    Liu X; Chen X; Li Y; Wang X; Peng X; Zhu W
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5169-78. PubMed ID: 22985256
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Purification and characterization of alginate lyase from locally isolated marine Pseudomonas stutzeri MSEA04.
    Beltagy EA; El-Borai A; Lewiz M; ElAssar SA
    Acta Biol Hung; 2016 Sep; 67(3):305-17. PubMed ID: 27630053
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor.
    Kim KK; Song HK; Shin DH; Hwang KY; Suh SW
    Structure; 1997 Feb; 5(2):173-85. PubMed ID: 9032073
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bifunctional carbohydrate biopolymers entrapped lipase as catalyst for the two consecutive conversions of α-pinene to oxy-derivatives.
    Tudorache M; Gheorghe A; Negoi A; Enache M; Maria GM; Parvulescu VI
    Carbohydr Polym; 2016 Nov; 152():726-733. PubMed ID: 27516324
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Studies on the lipase of Chromobacterium viscosum. V. Physical and chemical properties of the lipases.
    Isobe M; Sugiura M
    Chem Pharm Bull (Tokyo); 1977 Aug; 25(8):1980-6. PubMed ID: 922980
    [No Abstract]   [Full Text] [Related]  

  • 35. Inhibition of lipases from Chromobacterium viscosum and Rhizopus oryzae by tetrahydrolipstatin.
    Potthoff AP; Haalck L; Spener F
    Biochim Biophys Acta; 1998 Jan; 1389(2):123-31. PubMed ID: 9461253
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extracellular lipase of an entomopathogenic fungus effecting larvae of a scale insect.
    Ali S; Ren S; Huang Z
    J Basic Microbiol; 2014 Nov; 54(11):1148-59. PubMed ID: 24677050
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preliminary study on hydrophobic interaction chromatography of Chromobacterium viscosum lipase on polypropylene glycol immobilized on Sepharose.
    Diogo MM; Cabral JM; Queiroz JA
    J Chromatogr A; 1998 Feb; 796(1):177-80. PubMed ID: 9513291
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Optimization of conditions for immobilization of alpha-amylase from Bacillus sp. BKL20 in Ca2+-alginate beads].
    Kubrak OI; Lushchak VI
    Ukr Biokhim Zh (1999); 2008; 80(6):32-41. PubMed ID: 19351055
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stability of porcine and microbial lipases to conditions that approximate the proventriculus of young birds.
    Kermanshahi H; Maenz DD; Classen HL
    Poult Sci; 1998 Nov; 77(11):1665-70. PubMed ID: 9835341
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Studies on the lipase of Chromobacterium viscosum. 3. Purification of a low molecular weight lipase and its enzymatic properties.
    Sugiura M; Isobe M
    Biochim Biophys Acta; 1974 Mar; 341(1):195-200. PubMed ID: 4208235
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.