These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 113899)

  • 21. In-vitro assessment of the functional performance of the decellularized intact porcine aortic root.
    Korossis SA; Wilcox HE; Watterson KG; Kearney JN; Ingham E; Fisher J
    J Heart Valve Dis; 2005 May; 14(3):408-21; discussion 422. PubMed ID: 15974537
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cyclic loading response of bioprosthetic heart valves: effects of fixation stress state on the collagen fiber architecture.
    Wells SM; Sellaro T; Sacks MS
    Biomaterials; 2005 May; 26(15):2611-9. PubMed ID: 15585264
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Viscoelasticity of dynamically fixed bioprosthetic valves. II. Effect of glutaraldehyde concentration.
    Duncan AC; Boughner D; Vesely I
    J Thorac Cardiovasc Surg; 1997 Feb; 113(2):302-10. PubMed ID: 9040624
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tissue buckling as a mechanism of bioprosthetic valve failure.
    Vesely I; Boughner D; Song T
    Ann Thorac Surg; 1988 Sep; 46(3):302-8. PubMed ID: 3137903
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of the bending behaviour of porcine xenograft leaflets and of natural aortic valve material: bending stiffness, neutral axis and shear measurements.
    Vesely I; Boughner D
    J Biomech; 1989; 22(6-7):655-71. PubMed ID: 2509479
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Binding of preformed xenoantibodies to porcine bioprosthetic valves.
    Sanchez JA; Marboe CC; Auteri JS; Jeevanandum V; Edwards NM; Berger CL; Rose EA
    Ann Thorac Surg; 1991 Jan; 51(1):30-3. PubMed ID: 1898692
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fatigue-induced changes to the biaxial mechanical properties of glutaraldehyde-fixed porcine aortic valve leaflets.
    Christie GW; Gross JF; Eberhardt CE
    Semin Thorac Cardiovasc Surg; 1999 Oct; 11(4 Suppl 1):201-5. PubMed ID: 10660193
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An assessment of the mechanical properties of leaflets from four second-generation porcine bioprostheses with biaxial testing techniques.
    Mayne AS; Christie GW; Smaill BH; Hunter PJ; Barratt-Boyes BG
    J Thorac Cardiovasc Surg; 1989 Aug; 98(2):170-80. PubMed ID: 2755150
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The glutaraldehyde-treated porcine aortic valve. A study of the leaflets' mechanical properties.
    De Biasi S; Pilotto F; Pozzoni F
    Int J Artif Organs; 1980 Sep; 3(5):271-6. PubMed ID: 6780469
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of the cross-linking characteristics of porcine heart valves fixed with glutaraldehyde or epoxy compounds.
    Sung HW; Shen SH; Tu R; Lin D; Hata C; Noishiki Y; Tomizawa Y; Quijano RC
    ASAIO J; 1993; 39(3):M532-6. PubMed ID: 8268592
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Degeneration of bioprosthetic heart valve cusp and wall tissues is initiated during tissue preparation: an ultrastructural study.
    Simionescu DT; Lovekamp JJ; Vyavahare NR
    J Heart Valve Dis; 2003 Mar; 12(2):226-34. PubMed ID: 12701796
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomechanical and structural properties of the explanted bioprosthetic valve leaflets.
    Purinya B; Kasyanov V; Volkolakov J; Latsis R; Tetere G
    J Biomech; 1994 Jan; 27(1):1-11. PubMed ID: 8106530
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physiological function of stentless aortic valves is altered by trimming and removal of aortic wall components.
    Kuehnel RU; Stock UA; Wendt MO; Degenkolbe I; Jainski U; Hartrumpf M; Pohl M; Albes JM
    Interact Cardiovasc Thorac Surg; 2007 Apr; 6(2):182-7. PubMed ID: 17669805
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Platelet adherence to bioprosthetic cardiac valves.
    Magilligan DJ; Oyama C; Klein S; Riddle JM; Smith D
    Am J Cardiol; 1984 Mar; 53(7):945-9. PubMed ID: 6422734
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Porcine aortic valve bioprostheses: morphologic and functional considerations.
    Hilbert SL; Ferrans VJ
    J Long Term Eff Med Implants; 1992; 2(2-3):99-112. PubMed ID: 10148319
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extracellular matrix degrading enzymes are active in porcine stentless aortic bioprosthetic heart valves.
    Simionescu DT; Lovekamp JJ; Vyavahare NR
    J Biomed Mater Res A; 2003 Sep; 66(4):755-63. PubMed ID: 12926026
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A mechanism for the decrease in stiffness of bioprosthetic heart valve tissues after cross-linking.
    Vesely I
    ASAIO J; 1996; 42(6):993-9. PubMed ID: 8959274
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrodynamic characteristics of porcine aortic valves cross-linked with glutaraldehyde and polyepoxy compounds.
    Soda A; Tanaka R; Saida Y; Takashima K; Hirayama T; Umezu M; Yamane Y
    ASAIO J; 2009; 55(1):13-8. PubMed ID: 19092670
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formaldehyde replaces glutaraldehyde in porcine bioprosthetic heart valves.
    McClurg WM; Lawford PV; Hughes H; Rogers S
    J Heart Valve Dis; 1996 May; 5(3):343-7. PubMed ID: 8793688
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tissue engineering of cardiac valve prostheses II: biomechanical characterization of decellularized porcine aortic heart valves.
    Korossis SA; Booth C; Wilcox HE; Watterson KG; Kearney JN; Fisher J; Ingham E
    J Heart Valve Dis; 2002 Jul; 11(4):463-71. PubMed ID: 12150291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.