These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 113899)

  • 41. The pulmonary bioprosthetic heart valve: its unsuitability for use as an aortic valve replacement.
    Jennings LM; Butterfield M; Booth C; Watterson KG; Fisher J
    J Heart Valve Dis; 2002 Sep; 11(5):668-78; discussion 679. PubMed ID: 12358404
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Shelf-life of bioprosthetic heart valves: a structural and mechanical study.
    Julien M; Létouneau DR; Marois Y; Cardou A; King MW; Guidoin R; Chachra D; Lee JM
    Biomaterials; 1997 Apr; 18(8):605-12. PubMed ID: 9134160
    [TBL] [Abstract][Full Text] [Related]  

  • 43. St Jude Epic heart valve bioprostheses versus native human and porcine aortic valves - comparison of mechanical properties.
    Kalejs M; Stradins P; Lacis R; Ozolanta I; Pavars J; Kasyanov V
    Interact Cardiovasc Thorac Surg; 2009 May; 8(5):553-6. PubMed ID: 19190025
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A newly developed porcine heart valve bioprosthesis fixed with an epoxy compound. An experimental evaluation.
    Sung HW; Tu R; Shen SH; Witzel TH; Lin D; Hata C; Kingsbury CJ; Noishiki Y; Tomizawa Y; Quijano RC
    ASAIO J; 1994; 40(2):192-8. PubMed ID: 8003758
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fixation and mounting of porcine aortic valves for use in mock circuits.
    Schlöglhofer T; Aigner P; Stoiber M; Schima H
    Int J Artif Organs; 2013 Oct; 36(10):738-41. PubMed ID: 23918266
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Glycosaminoglycan-degrading enzymes in porcine aortic heart valves: implications for bioprosthetic heart valve degeneration.
    Simionescu DT; Lovekamp JJ; Vyavahare NR
    J Heart Valve Dis; 2003 Mar; 12(2):217-25. PubMed ID: 12701795
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Relationship between mechanical and hydrodynamic properties of bioprosthesis produced from canine aortic valve.
    Sato M; Maeta H; Okamura K; Ohshima N
    Artif Organs; 1985 May; 9(2):184-91. PubMed ID: 4015456
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Harvested porcine mitral xenograft fixation: impact on fluid dynamic performance.
    Jensen MO; Lemmon JD; Gessaghi VC; Conrad CP; Levine RA; Yoganathan AP
    J Heart Valve Dis; 2001 Jan; 10(1):111-24. PubMed ID: 11206757
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Hemodynamic performance of newly developed composite stentless porcine aortic valve: in vitro testing and in vivo experiment with sheep].
    Song GM; Zhou JY; Hu SS; Cui JW; Song YH; Tang Y; Zhang Y; Jiang H; Yuan WM; Song XY
    Zhonghua Yi Xue Za Zhi; 2008 Jul; 88(29):2059-63. PubMed ID: 19080436
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Normal aortic valves stay open much longer in systole than porcine substitutes.
    Subhani M; Kumar RK; Balakrishnan KR
    Asian Cardiovasc Thorac Ann; 2013 Jun; 21(3):275-80. PubMed ID: 24570492
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biomechanical and ultrastructural comparison of cryopreservation and a novel cellular extraction of porcine aortic valve leaflets.
    Courtman DW; Pereira CA; Omar S; Langdon SE; Lee JM; Wilson GJ
    J Biomed Mater Res; 1995 Dec; 29(12):1507-16. PubMed ID: 8600141
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A model of the geometrical changes in aortic valve leaflets in response to leaflet extension and variable boundary conditions.
    Fisher J; Butterfield M; Lockie KJ; Davies GA
    Proc Inst Mech Eng H; 1992; 206(1):7-14. PubMed ID: 1418197
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hydrodynamic function of second generation porcine bioprosthetic heart valves.
    Butterfield M; Fisher J; Kearney JN; Davies GA
    J Card Surg; 1991 Dec; 6(4):490-8. PubMed ID: 1815774
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanical testing of glutaraldehyde cross-linked mitral valves. Part one: In vitro mechanical behaviour.
    Northeast R; Constable M; Burton HE; Lawless BM; Gramigna V; Lim Goh K; Buchan KG; Espino DM
    Proc Inst Mech Eng H; 2021 Mar; 235(3):281-290. PubMed ID: 33231114
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A comparison between glutaraldehyde and diepoxide-fixed stentless porcine aortic valves: biochemical and mechanical characterization and resistance to mineralization.
    Myers DJ; Nakaya G; Girardot MN; Christie GW
    J Heart Valve Dis; 1995 Jul; 4 Suppl 1():S98-101. PubMed ID: 8581221
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hydrodynamic performance of the Medtronic Freestyle Aortic Root Bioprosthesis.
    Yoganathan AP; Eberhardt CE; Walker PG
    J Heart Valve Dis; 1994 Sep; 3(5):571-80. PubMed ID: 8000594
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of fixation pressure on the biaxial mechanical behavior of porcine bioprosthetic heart valves with long-term cyclic loading.
    Wells SM; Sacks MS
    Biomaterials; 2002 Jun; 23(11):2389-99. PubMed ID: 12013187
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Early stenosis and calcification of glutaraldehyde-preserved porcine xenografts in children.
    Hellberg K; Ruschewski W; de Vivie ER
    Thorac Cardiovasc Surg; 1981 Dec; 29(6):369-74. PubMed ID: 6179219
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Leaflet geometry and function in porcine bioprostheses.
    Butterfield M; Fisher J; Davies GA; Kearney JM
    Eur J Cardiothorac Surg; 1991; 5(1):27-32; discussion 33. PubMed ID: 2018645
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Porcine aortic wall flexibility. Fresh vs Denacol fixed vs glutaraldehyde fixed.
    Zhou J; Quintero LJ; Helmus MN; Lee C; Kafesjian R
    ASAIO J; 1997; 43(5):M470-5. PubMed ID: 9360087
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.