BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 11390693)

  • 1. Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes.
    van Beilen JB; Panke S; Lucchini S; Franchini AG; Röthlisberger M; Witholt B
    Microbiology (Reading); 2001 Jun; 147(Pt 6):1621-1630. PubMed ID: 11390693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The PalkBFGHJKL promoter is under carbon catabolite repression control in Pseudomonas oleovorans but not in Escherichia coli alk+ recombinants.
    Staijen IE; Marcionelli R; Witholt B
    J Bacteriol; 1999 Mar; 181(5):1610-6. PubMed ID: 10049394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular screening for alkane hydroxylase genes in Gram-negative and Gram-positive strains.
    Smits TH; Röthlisberger M; Witholt B; van Beilen JB
    Environ Microbiol; 1999 Aug; 1(4):307-17. PubMed ID: 11207749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis.
    van Beilen JB; Marín MM; Smits TH; Röthlisberger M; Franchini AG; Witholt B; Rojo F
    Environ Microbiol; 2004 Mar; 6(3):264-73. PubMed ID: 14871210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the alternative sigma factor sigmaS in expression of the AlkS regulator of the Pseudomonas oleovorans alkane degradation pathway.
    Canosa I; Yuste L; Rojo F
    J Bacteriol; 1999 Mar; 181(6):1748-54. PubMed ID: 10074066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological changes and alk gene instability in Pseudomonas oleovorans during induction and expression of alk genes.
    Chen Q; Janssen DB; Witholt B
    J Bacteriol; 1996 Sep; 178(18):5508-12. PubMed ID: 8808943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A positive feedback mechanism controls expression of AlkS, the transcriptional regulator of the Pseudomonas oleovorans alkane degradation pathway.
    Canosa I; Sánchez-Romero JM; Yuste L; Rojo F
    Mol Microbiol; 2000 Feb; 35(4):791-9. PubMed ID: 10692156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New alkane-responsive expression vectors for Escherichia coli and pseudomonas.
    Smits TH; Seeger MA; Witholt B; van Beilen JB
    Plasmid; 2001 Jul; 46(1):16-24. PubMed ID: 11535032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon-source-dependent expression of the PalkB promoter from the Pseudomonas oleovorans alkane degradation pathway.
    Yuste L; Canosa I; Rojo F
    J Bacteriol; 1998 Oct; 180(19):5218-26. PubMed ID: 9748457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria.
    Smits TH; Balada SB; Witholt B; van Beilen JB
    J Bacteriol; 2002 Mar; 184(6):1733-42. PubMed ID: 11872725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the crc gene in catabolic repression of the Pseudomonas putida GPo1 alkane degradation pathway.
    Yuste L; Rojo F
    J Bacteriol; 2001 Nov; 183(21):6197-206. PubMed ID: 11591662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled and functional expression of the Pseudomonas oleovorans alkane utilizing system in Pseudomonas putida and Escherichia coli.
    Eggink G; Lageveen RG; Altenburg B; Witholt B
    J Biol Chem; 1987 Dec; 262(36):17712-8. PubMed ID: 2826430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel alkane monooxygenase (
    Wang S; Li G; Liao Z; Liu T; Ma T
    PeerJ; 2022; 10():e14147. PubMed ID: 36193440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The genes for benzene catabolism in Pseudomonas putida ML2 are flanked by two copies of the insertion element IS1489, forming a class-I-type catabolic transposon, Tn5542.
    Fong KP; Goh CB; Tan HM
    Plasmid; 2000 Mar; 43(2):103-10. PubMed ID: 10686128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The alkane oxidation system of Pseudomonas oleovorans: induction of the alk genes in Escherichia coli W3110 (pGEc47) affects membrane biogenesis and results in overexpression of alkane hydroxylase in a distinct cytoplasmic membrane subfraction.
    Nieboer M; Kingma J; Witholt B
    Mol Microbiol; 1993 Jun; 8(6):1039-51. PubMed ID: 8361351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases.
    van Beilen JB; Funhoff EG; van Loon A; Just A; Kaysser L; Bouza M; Holtackers R; Röthlisberger M; Li Z; Witholt B
    Appl Environ Microbiol; 2006 Jan; 72(1):59-65. PubMed ID: 16391025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Pseudomonas oleovorans alkane hydroxylase gene. Sequence and expression.
    Kok M; Oldenhuis R; van der Linden MP; Raatjes P; Kingma J; van Lelyveld PH; Witholt B
    J Biol Chem; 1989 Apr; 264(10):5435-41. PubMed ID: 2647718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetics of alkane oxidation by Pseudomonas oleovorans.
    van Beilen JB; Wubbolts MG; Witholt B
    Biodegradation; 1994 Dec; 5(3-4):161-74. PubMed ID: 7532480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential expression of the components of the two alkane hydroxylases from Pseudomonas aeruginosa.
    Marín MM; Yuste L; Rojo F
    J Bacteriol; 2003 May; 185(10):3232-7. PubMed ID: 12730186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of genes for alkane and naphthalene catabolism in Rhodococcus sp. strain 1BN.
    Andreoni V; Bernasconi S; Colombo M; van Beilen JB; Cavalca L
    Environ Microbiol; 2000 Oct; 2(5):572-7. PubMed ID: 11233165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.