These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 11391776)

  • 1. Generalized comparative modeling (GENECOMP): a combination of sequence comparison, threading, and lattice modeling for protein structure prediction and refinement.
    Kolinski A; Betancourt MR; Kihara D; Rotkiewicz P; Skolnick J
    Proteins; 2001 Aug; 44(2):133-49. PubMed ID: 11391776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Template-based protein structure prediction in CASP11 and retrospect of I-TASSER in the last decade.
    Yang J; Zhang W; He B; Walker SE; Zhang H; Govindarajoo B; Virtanen J; Xue Z; Shen HB; Zhang Y
    Proteins; 2016 Sep; 84 Suppl 1(Suppl 1):233-46. PubMed ID: 26343917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TASSER: an automated method for the prediction of protein tertiary structures in CASP6.
    Zhang Y; Arakaki AK; Skolnick J
    Proteins; 2005; 61 Suppl 7():91-98. PubMed ID: 16187349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BioShell-Threading: versatile Monte Carlo package for protein 3D threading.
    Gniewek P; Kolinski A; Kloczkowski A; Gront D
    BMC Bioinformatics; 2014 Jan; 15():22. PubMed ID: 24444459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of TASSER-based CASP7 protein structure prediction results.
    Zhou H; Pandit SB; Lee SY; Borreguero J; Chen H; Wroblewska L; Skolnick J
    Proteins; 2007; 69 Suppl 8():90-7. PubMed ID: 17705276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporating Ab Initio energy into threading approaches for protein structure prediction.
    Shao M; Wang S; Wang C; Yuan X; Li SC; Zheng W; Bu D
    BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S54. PubMed ID: 21342587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interplay of I-TASSER and QUARK for template-based and ab initio protein structure prediction in CASP10.
    Zhang Y
    Proteins; 2014 Feb; 82 Suppl 2(0 2):175-87. PubMed ID: 23760925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TOUCHSTONE II: a new approach to ab initio protein structure prediction.
    Zhang Y; Kolinski A; Skolnick J
    Biophys J; 2003 Aug; 85(2):1145-64. PubMed ID: 12885659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defrosting the frozen approximation: PROSPECTOR--a new approach to threading.
    Skolnick J; Kihara D
    Proteins; 2001 Feb; 42(3):319-31. PubMed ID: 11151004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab initio protein structure prediction on a genomic scale: application to the Mycoplasma genitalium genome.
    Kihara D; Zhang Y; Lu H; Kolinski A; Skolnick J
    Proc Natl Acad Sci U S A; 2002 Apr; 99(9):5993-8. PubMed ID: 11959918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab initio protein structure prediction via a combination of threading, lattice folding, clustering, and structure refinement.
    Skolnick J; Kolinski A; Kihara D; Betancourt M; Rotkiewicz P; Boniecki M
    Proteins; 2001; Suppl 5():149-56. PubMed ID: 11835492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and large scale benchmark testing of the PROSPECTOR_3 threading algorithm.
    Skolnick J; Kihara D; Zhang Y
    Proteins; 2004 Aug; 56(3):502-18. PubMed ID: 15229883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TOUCHSTONE: an ab initio protein structure prediction method that uses threading-based tertiary restraints.
    Kihara D; Lu H; Kolinski A; Skolnick J
    Proc Natl Acad Sci U S A; 2001 Aug; 98(18):10125-30. PubMed ID: 11504922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method for the improvement of threading-based protein models.
    Kolinski A; Rotkiewicz P; Ilkowski B; Skolnick J
    Proteins; 1999 Dec; 37(4):592-610. PubMed ID: 10651275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Template-based and free modeling of I-TASSER and QUARK pipelines using predicted contact maps in CASP12.
    Zhang C; Mortuza SM; He B; Wang Y; Zhang Y
    Proteins; 2018 Mar; 86 Suppl 1(Suppl 1):136-151. PubMed ID: 29082551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated structure prediction of weakly homologous proteins on a genomic scale.
    Zhang Y; Skolnick J
    Proc Natl Acad Sci U S A; 2004 May; 101(20):7594-9. PubMed ID: 15126668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eliminating superfluous neighbor pairs while threading fold models.
    Bieńkowska JR; Rogers RG; Smith TF
    Pac Symp Biocomput; 2000; ():107-18. PubMed ID: 10902161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalized protein structure prediction based on combination of fold-recognition with de novo folding and evaluation of models.
    Koliński A; Bujnicki JM
    Proteins; 2005; 61 Suppl 7():84-90. PubMed ID: 16187348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of QUARK and I-TASSER for Ab Initio Protein Structure Prediction in CASP11.
    Zhang W; Yang J; He B; Walker SE; Zhang H; Govindarajoo B; Virtanen J; Xue Z; Shen HB; Zhang Y
    Proteins; 2016 Sep; 84 Suppl 1(Suppl 1):76-86. PubMed ID: 26370505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FragQA: predicting local fragment quality of a sequence-structure alignment.
    Gao X; Bu D; Li SC; Xu J; Li M
    Genome Inform; 2007; 19():27-39. PubMed ID: 18546502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.