These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 11392133)

  • 1. Stable strontium accumulation by earthworms: a paradigm for radiostrontium interactions with its cationic analogue, calcium.
    Morgan JE; Richards SP; Morgan AJ
    Environ Toxicol Chem; 2001 Jun; 20(6):1236-43. PubMed ID: 11392133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uptake of 134Cs from a sandy soil by two earthworm species: the effects of temperature.
    Janssen MP; Glastra P; Lembrechts JF
    Arch Environ Contam Toxicol; 1996 Aug; 31(2):184-91. PubMed ID: 8781067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulated metal speciation in earthworm populations with multigenerational exposure to metalliferous soils: cell fractionation and high-energy synchrotron analyses.
    Andre J; Charnock J; Stürzenbaum SR; Kille P; Morgan AJ; Hodson ME
    Environ Sci Technol; 2009 Sep; 43(17):6822-9. PubMed ID: 19764255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of pH on Cu accumulation kinetics in earthworm cytosol.
    Vijver MG; Koster M; Peijnenburg WJ
    Environ Sci Technol; 2007 Apr; 41(7):2255-60. PubMed ID: 17438772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The accumulation and intracellular compartmentation of cadmium, lead, zinc and calcium in two earthworm species (Dendrobaena rubida and Lumbricus rubellus) living in highly contaminated soil.
    Morgan AJ; Morris B
    Histochemistry; 1982; 75(2):269-85. PubMed ID: 7129969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic biotransformation in earthworms from contaminated soils.
    Button M; Jenkin GR; Harrington CF; Watts MJ
    J Environ Monit; 2009 Aug; 11(8):1484-91. PubMed ID: 19657532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of soil properties on molybdenum uptake and elimination kinetics in the earthworm Eisenia andrei.
    Díez-Ortiz M; Giska I; Groot M; Borgman EM; Van Gestel CA
    Chemosphere; 2010 Aug; 80(9):1036-43. PubMed ID: 20674662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cu accumulation in Lumbricus rubellus under laboratory conditions compared with accumulation under field conditions.
    Marinussen MP; Van der Zee SE; de Haan FA
    Ecotoxicol Environ Saf; 1997 Feb; 36(1):17-26. PubMed ID: 9056396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review of studies performed to assess metal uptake by earthworms.
    Nahmani J; Hodson ME; Black S
    Environ Pollut; 2007 Jan; 145(2):402-24. PubMed ID: 16815606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Availability of polycyclic aromatic hydrocarbons to earthworms (Eisenia andrei, Oligochaeta) in field-polluted soils and soil-sediment mixtures.
    Jager T; Baerselman R; Dijkman E; de Groot AC; Hogendoorn EA; de Jong A; Kruitbosch JA; Peijnenburg WJ
    Environ Toxicol Chem; 2003 Apr; 22(4):767-75. PubMed ID: 12685711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mercury, cadmium and lead concentrations in different ecophysiological groups of earthworms in forest soils.
    Ernst G; Zimmermann S; Christie P; Frey B
    Environ Pollut; 2008 Dec; 156(3):1304-13. PubMed ID: 18400348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cu-Cd interactions in earthworms maintained in laboratory microcosms: the examination of a putative copper paradox.
    Mariño F; Stürzenbaum SR; Kille P; Morgan AJ
    Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1998 Aug; 120(2):217-23. PubMed ID: 9827035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of earthworms on the fractionation and bioavailability of heavy metals before and after soil remediation.
    Udovic M; Lestan D
    Environ Pollut; 2007 Jul; 148(2):663-8. PubMed ID: 17234313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic speciation in the earthworms Lumbricus rubellus and Dendrodrilus rubidus.
    Langdon CJ; Piearce TG; Feldmann J; Semple KT; Meharg AA
    Environ Toxicol Chem; 2003 Jun; 22(6):1302-8. PubMed ID: 12785588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous bioaccumulation of lead in the earthworm Eisenoides lonnbergi (Michaelsen).
    Beyer WN; Codling EE; Rutzke MA
    Environ Toxicol Chem; 2018 Mar; 37(3):914-919. PubMed ID: 29111578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pH and calcium on lead and cadmium uptake by earthworms in water.
    Kiewiet AT; Ma WC
    Ecotoxicol Environ Saf; 1991 Feb; 21(1):32-7. PubMed ID: 2060485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicokinetics of metals in the earthworm Lumbricus rubellus exposed to natural polluted soils--relevance of laboratory tests to the field situation.
    Giska I; van Gestel CA; Skip B; Laskowski R
    Environ Pollut; 2014 Jul; 190():123-32. PubMed ID: 24747106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-dependent transfer of 137Cs, 85Sr and 65Zn to earthworms in highly contaminated soils.
    Keum DK; Jun I; Lim KM; Choi YH; Howard BJ
    J Environ Radioact; 2013 Dec; 126():427-33. PubMed ID: 22948029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship of the mobile forms of calcium and strontium in soils with their accumulation in meadow plants in the area of Kashin-Beck endemia.
    Ermakov V; Bech J; Gulyaeva U; Tyutikov S; Safonov V; Danilova V; Roca N
    Environ Geochem Health; 2020 Jan; 42(1):159-171. PubMed ID: 31111334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative ultrastructure of metal-sequestering cells reflects intersite and interspecies differences in earthworm metal burdens.
    Morgan AJ; Turner MP
    Arch Environ Contam Toxicol; 2005 Jul; 49(1):45-52. PubMed ID: 15981036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.