These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 1139318)

  • 1. Undershoots following stimulus-induced rises of extracellular potassium concentration in cerebral cortex of cat.
    Heinemann U; Lux HD
    Brain Res; 1975 Jul; 93(1):63-76. PubMed ID: 1139318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ceiling of stimulus induced rises in extracellular potassium concentration in the cerebral cortex of cat.
    Heinemann U; Lux HD
    Brain Res; 1977 Jan; 120(2):231-49. PubMed ID: 832122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular free calcium and potassium during paroxsmal activity in the cerebral cortex of the cat.
    Heinemann U; Lux HD; Gutnick MJ
    Exp Brain Res; 1977 Mar; 27(3-4):237-43. PubMed ID: 880984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulus induced and seizure related changes in extracellular potassium concentration in cat thalamus (VPL).
    Gutnick MJ; Heinemann U; Lux HD
    Electroencephalogr Clin Neurophysiol; 1979 Sep; 47(3):329-44. PubMed ID: 90603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relation between extracellular potassium concentration and neuronal activities in cat thalamus (VPL) during projection of cortical epileptiform discharge.
    Heinemann U; Gutnick MJ
    Electroencephalogr Clin Neurophysiol; 1979 Sep; 47(3):345-7. PubMed ID: 90604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The clearing of excess potassium from extracellular space in spinal cord and cerebral cortex.
    Cordingley GE; Somjen GG
    Brain Res; 1978 Aug; 151(2):291-306. PubMed ID: 209864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular potassium concentration in chronic alumina cream foci of cats.
    Heinemann U; Dietzel I
    J Neurophysiol; 1984 Sep; 52(3):421-34. PubMed ID: 6090607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evoked and spontaneous extracellular potassium shifts in the cerebral cortex of unanaesthetized cats.
    Molnár M; Skinner JE
    Acta Physiol Hung; 1983; 61(4):265-79. PubMed ID: 6316727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships between electrically induced slow negative potentials and changes in extracellular potassium concentrations in cerebral cortex of the cat.
    Ocherashvili E; Roitbak A
    Neurosci Lett; 1992 Feb; 136(1):72-4. PubMed ID: 1635669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential activity among wide-field neurons of the cat postcruciate cerebral cortex.
    Towe AL; Whitehorn D; Nyquist JK
    Exp Neurol; 1968 Apr; 20(4):497-521. PubMed ID: 5659444
    [No Abstract]   [Full Text] [Related]  

  • 11. [Changes in the concentration of extracellular potassium in the cerebral cortex with different parameters of electrical stimulation].
    Roĭtbak AI; Ocherashvili IV
    Fiziol Zh SSSR Im I M Sechenova; 1987 Feb; 73(2):277-83. PubMed ID: 3569598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in extracellular potassium and calcium concentration and neural activity during prolonged electrical stimulation of the cat cerebral cortex at defined charge densities.
    McCreery DB; Agnew WF
    Exp Neurol; 1983 Feb; 79(2):371-96. PubMed ID: 6822270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenobarbital actions in vivo: effects on extra cellular potassium activity and oxidative metabolism in cat cerebral cortex.
    LaManna JC; Cordingley G; Rosenthal M
    J Pharmacol Exp Ther; 1977 Mar; 200(3):560-9. PubMed ID: 191589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responses of electrical potential, potassium levels, and oxidative metabolic activity of the cerebral neocortex of cats.
    Lothman E; Lamanna J; Cordingley G; Rosenthal M; Somjen G
    Brain Res; 1975 Apr; 88(1):15-36. PubMed ID: 164265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The equilibration time course of (K + ) 0 in cat cortex.
    Lux HD; Neher E
    Exp Brain Res; 1973 Apr; 17(2):190-205. PubMed ID: 4714525
    [No Abstract]   [Full Text] [Related]  

  • 16. Activity-dependent extracellular K+ accumulation in rat optic nerve: the role of glial and axonal Na+ pumps.
    Ransom CB; Ransom BR; Sontheimer H
    J Physiol; 2000 Feb; 522 Pt 3(Pt 3):427-42. PubMed ID: 10713967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular potassium changes in the spinal cord of the cat and their relation to slow potentials, active transport and impulse transmission.
    Krív N; Syková E; Vyklický L
    J Physiol; 1975 Jul; 249(1):167-82. PubMed ID: 168359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential role of KIR channel and Na(+)/K(+)-pump in the regulation of extracellular K(+) in rat hippocampus.
    D'Ambrosio R; Gordon DS; Winn HR
    J Neurophysiol; 2002 Jan; 87(1):87-102. PubMed ID: 11784732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Re-analysis of the antidromic cortical response. II. On the contribution of cell discharge and PSPs to the evoked potentials.
    Humphrey DR
    Electroencephalogr Clin Neurophysiol; 1968 Nov; 25(5):421-42. PubMed ID: 4182596
    [No Abstract]   [Full Text] [Related]  

  • 20. Cortical extracellular potassium concentration during the development of the interhemispheric response into the selfsustained afterdischarge.
    Machek J; Ujec E; Pavlík V
    Physiol Bohemoslov; 1975; 24(1):41-4. PubMed ID: 123342
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.