These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 11393253)

  • 1. Dynamic stretch correlates to both morphological abnormalities and electrophysiological impairment in a model of traumatic axonal injury.
    Bain AC; Raghupathi R; Meaney DF
    J Neurotrauma; 2001 May; 18(5):499-511. PubMed ID: 11393253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue-level thresholds for axonal damage in an experimental model of central nervous system white matter injury.
    Bain AC; Meaney DF
    J Biomech Eng; 2000 Dec; 122(6):615-22. PubMed ID: 11192383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wallerian degeneration in the optic nerve stretch-injury model of traumatic brain injury: a stereological analysis.
    Maxwell WL; Bartlett E; Morgan H
    J Neurotrauma; 2015 Jun; 32(11):780-90. PubMed ID: 25333317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructural observation of effect of moderate hypothermia on axonal damage in an animal model of diffuse axonal injury.
    Sun X; Tang W; Zheng L
    Chin J Traumatol; 2002 Dec; 5(6):355-60. PubMed ID: 12443577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The microvascular response to stretch injury in the adult guinea pig visual system.
    Maxwell WL; Irvine A; Watt C; Graham DI; Adams JH; Gennarelli TA
    J Neurotrauma; 1991; 8(4):271-9. PubMed ID: 1803035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology and neurophysiology of focal axonal injury experimentally induced in the guinea pig optic nerve.
    Tomei G; Spagnoli D; Ducati A; Landi A; Villani R; Fumagalli G; Sala C; Gennarelli T
    Acta Neuropathol; 1990; 80(5):506-13. PubMed ID: 2251908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy neurofilament accumulation and alpha-spectrin degradation accompany cerebellar white matter functional deficits following forebrain fluid percussion injury.
    Park E; Liu E; Shek M; Park A; Baker AJ
    Exp Neurol; 2007 Mar; 204(1):49-57. PubMed ID: 17070521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Traumatic axonal injury results in biphasic calpain activation and retrograde transport impairment in mice.
    Saatman KE; Abai B; Grosvenor A; Vorwerk CK; Smith DH; Meaney DF
    J Cereb Blood Flow Metab; 2003 Jan; 23(1):34-42. PubMed ID: 12500089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterising effects of impact velocity on brain and behaviour in a model of diffuse traumatic axonal injury.
    Yan EB; Johnstone VP; Alwis DS; Morganti-Kossmann MC; Rajan R
    Neuroscience; 2013 Sep; 248():17-29. PubMed ID: 23735754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Traumatic axonal injury after closed head injury in the neonatal pig.
    Raghupathi R; Margulies SS
    J Neurotrauma; 2002 Jul; 19(7):843-53. PubMed ID: 12184854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A morphological study of diffuse axonal injury in a rat model by lateral head rotation trauma.
    Xiaoshengi H; Guitao Y; Xiang Z; Zhou F
    Acta Neurol Belg; 2010 Mar; 110(1):49-56. PubMed ID: 20514926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short-duration treatment with the calpain inhibitor MDL-28170 does not protect axonal transport in an in vivo model of traumatic axonal injury.
    Ma M; Li L; Wang X; Bull DL; Shofer FS; Meaney DF; Neumar RW
    J Neurotrauma; 2012 Jan; 29(2):445-51. PubMed ID: 22077394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Head-to-nerve analysis of electromechanical impairments of diffuse axonal injury.
    Cinelli I; Destrade M; McHugh P; Trotta A; Gilchrist M; Duffy M
    Biomech Model Mechanobiol; 2019 Apr; 18(2):361-374. PubMed ID: 30430371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Traumatic axonal injury is exacerbated following repetitive closed head injury in the neonatal pig.
    Raghupathi R; Mehr MF; Helfaer MA; Margulies SS
    J Neurotrauma; 2004 Mar; 21(3):307-16. PubMed ID: 15115605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fixation, not death, reduces sensitivity of DTI in detecting optic nerve damage.
    Sun SW; Liang HF; Xie M; Oyoyo U; Lee A
    Neuroimage; 2009 Feb; 44(3):611-9. PubMed ID: 19027864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophysiological white matter dysfunction and association with neurobehavioral deficits following low-level primary blast trauma.
    Park E; Eisen R; Kinio A; Baker AJ
    Neurobiol Dis; 2013 Apr; 52():150-9. PubMed ID: 23238347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Observation of neural electrophysiology and morphology in traumatic optic neuropathy in cat model].
    Jiang Y; Li N; Zhang NK; Dong P; Liu LX
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2007 Jul; 42(7):520-5. PubMed ID: 17886682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact mechanics and axonal injury in a sheep model.
    Anderson RW; Brown CJ; Blumbergs PC; McLean AJ; Jones NR
    J Neurotrauma; 2003 Oct; 20(10):961-74. PubMed ID: 14588113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BrainPhys® increases neurofilament levels in CNS cultures, and facilitates investigation of axonal damage after a mechanical stretch-injury in vitro.
    Jackson TC; Kotermanski SE; Jackson EK; Kochanek PM
    Exp Neurol; 2018 Feb; 300():232-246. PubMed ID: 29199132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel model of optic nerve injury established by microsurgery using the pterional approach in cats.
    Yu F; Zhang R
    Neurol India; 2011; 59(3):355-61. PubMed ID: 21743162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.