BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 11393300)

  • 1. A century later: Woodworth's (1899) two-component model of goal-directed aiming.
    Elliott D; Helsen WF; Chua R
    Psychol Bull; 2001 May; 127(3):342-57. PubMed ID: 11393300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions of pre-Fitts researchers to goal-directed aiming studies.
    Hoffmann ER
    J Mot Behav; 2012; 44(1):27-46. PubMed ID: 22188299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Goal-directed aiming: two components but multiple processes.
    Elliott D; Hansen S; Grierson LE; Lyons J; Bennett SJ; Hayes SJ
    Psychol Bull; 2010 Nov; 136(6):1023-44. PubMed ID: 20822209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manual asymmetries and saccadic eye movements in right-handers during single and reciprocal aiming movements.
    Helsen WF; Starkes JL; Elliott D; Buekers MJ
    Cortex; 1998 Sep; 34(4):513-29. PubMed ID: 9800087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematic analysis of goal-directed aims made against early and late perturbations: an investigation of the relative influence of two online control processes.
    Grierson LE; Elliott D
    Hum Mov Sci; 2008 Dec; 27(6):839-56. PubMed ID: 18768232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Online versus offline processing of visual feedback in the production of component submovements.
    Khan MA; Franks IM
    J Mot Behav; 2003 Sep; 35(3):285-95. PubMed ID: 12873843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography.
    Winstein CJ; Grafton ST; Pohl PS
    J Neurophysiol; 1997 Mar; 77(3):1581-94. PubMed ID: 9084621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Common vs. independent limb control in sequential vertical aiming: The cost of potential errors during extensions and reversals.
    Roberts JW; Elliott D; Lyons JL; Hayes SJ; Bennett SJ
    Acta Psychol (Amst); 2016 Jan; 163():27-37. PubMed ID: 26590702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effector mass and trajectory optimization in the online regulation of goal-directed movement.
    Burkitt JJ; Staite V; Yeung A; Elliott D; Lyons JL
    Exp Brain Res; 2015 Apr; 233(4):1097-107. PubMed ID: 25567091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Impact of Strategic Trajectory Optimization on Illusory Target Biases During Goal-Directed Aiming.
    Roberts JW; Burkitt JJ; Elliott D; Lyons JL
    J Mot Behav; 2016; 48(6):542-551. PubMed ID: 27362494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time manipulation of visual displacement during manual aiming.
    Hansen S; Tremblay L; Elliott D
    Hum Mov Sci; 2008 Feb; 27(1):1-11. PubMed ID: 18179838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apparent and Actual Trajectory Control Depend on the Behavioral Context in Upper Limb Motor Tasks.
    Cluff T; Scott SH
    J Neurosci; 2015 Sep; 35(36):12465-76. PubMed ID: 26354914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-line vs. off-line utilization of peripheral visual afferent information to ensure spatial accuracy of goal-directed movements.
    Bédard P; Proteau L
    Exp Brain Res; 2004 Sep; 158(1):75-85. PubMed ID: 15029468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the role of static and dynamic visual afferent information in goal-directed aiming movements.
    Bédard P; Proteau L
    Exp Brain Res; 2001 Jun; 138(4):419-31. PubMed ID: 11465739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reflections on the golden age of Columbia psychology.
    Thorne FC
    J Hist Behav Sci; 1976 Apr; 12(2):159-65. PubMed ID: 801014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial accuracy demand in aiming movements: kinematic analysis of subtended angle and tolerance width.
    Yao WX; DeSola B; Zunker W; Zhong CB; Wallace SA; Ding Y
    Percept Mot Skills; 2007 Apr; 104(2):611-20. PubMed ID: 17566451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing rapid aiming behaviour: Movement kinematics depend on the cost of corrective modifications.
    Lyons J; Hansen S; Hurding S; Elliott D
    Exp Brain Res; 2006 Sep; 174(1):95-100. PubMed ID: 16575577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human Information Processing of the Speed of Various Movements Estimated Based on Trajectory Change.
    Murakami H; Yamada N
    Entropy (Basel); 2023 Apr; 25(4):. PubMed ID: 37190483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The breakdown of Fitts' law in rapid, reciprocal aiming movements.
    Smits-Engelsman BC; Van Galen GP; Duysens J
    Exp Brain Res; 2002 Jul; 145(2):222-30. PubMed ID: 12110963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid and flexible whole body postural responses are evoked from perturbations to the upper limb during goal-directed reaching.
    Lowrey CR; Nashed JY; Scott SH
    J Neurophysiol; 2017 Mar; 117(3):1070-1083. PubMed ID: 28003415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.