These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 11393300)

  • 21. Movement accuracy constraints in Parkinson's disease patients.
    Rand MK; Stelmach GE; Bloedel JR
    Neuropsychologia; 2000; 38(2):203-12. PubMed ID: 10660230
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potentiating ballistic limb movements through voluntary production of the stretch-shorten cycle.
    Walter CB
    Percept Mot Skills; 1992 Apr; 74(2):435-42. PubMed ID: 1594402
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Is visual-based, online control of manual-aiming movements disturbed when adapting to new movement dynamics?
    Mackrous I; Proteau L
    Vision Res; 2015 May; 110(Pt B):223-32. PubMed ID: 24874948
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Specificity of practice results from differences in movement planning strategies.
    Mackrous I; Proteau L
    Exp Brain Res; 2007 Nov; 183(2):181-93. PubMed ID: 17618424
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Task-dependent asymmetries in the utilization of proprioceptive feedback for goal-directed movement.
    Goble DJ; Brown SH
    Exp Brain Res; 2007 Jul; 180(4):693-704. PubMed ID: 17297548
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Factors underlying age-related changes in discrete aiming.
    Van Halewyck F; Lavrysen A; Levin O; Boisgontier MP; Elliott D; Helsen WF
    Exp Brain Res; 2015 Jun; 233(6):1733-44. PubMed ID: 25788008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of visual feedback of hand position in the control of manual prehension.
    Connolly JD; Goodale MA
    Exp Brain Res; 1999 Apr; 125(3):281-6. PubMed ID: 10229019
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Movement adaptations in 7- to 10-year-old typically developing children: evidence for a transition in feedback-based motor control.
    Van Braeckel K; Butcher PR; Geuze RH; Stremmelaar EF; Bouma A
    Hum Mov Sci; 2007 Dec; 26(6):927-42. PubMed ID: 17904673
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Monocular and binocular vision in the control of goal-directed movement.
    Coull J; Weir PL; Tremblay L; Weeks DJ; Elliott D
    J Mot Behav; 2000 Dec; 32(4):347-60. PubMed ID: 11114228
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intercepting a moving target: effects of temporal precision constraints and movement amplitude.
    Tresilian JR; Lonergan A
    Exp Brain Res; 2002 Jan; 142(2):193-207. PubMed ID: 11807574
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Trading off speed and accuracy in rapid, goal-directed movements.
    Dean M; Wu SW; Maloney LT
    J Vis; 2007 Jul; 7(5):10.1-12. PubMed ID: 18217850
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of model orientation on the visuomotor imitation of arm movements: the role of mental rotation.
    Krause D; Kobow S
    Hum Mov Sci; 2013 Apr; 32(2):314-27. PubMed ID: 23623457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fractal correlation of initial trajectory dynamics vanishes at the movement end point in human rapid goal-directed movements.
    Miyazaki M; Kadota H; Kudo K; Masani K; Ohtsuki T
    Neurosci Lett; 2001 May; 304(3):173-6. PubMed ID: 11343830
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Goal-directed aiming and the relative contribution of two online control processes.
    Grierson LE; Elliott D
    Am J Psychol; 2009; 122(3):309-24. PubMed ID: 19827701
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accuracy of planar reaching movements. II. Systematic extent errors resulting from inertial anisotropy.
    Gordon J; Ghilardi MF; Cooper SE; Ghez C
    Exp Brain Res; 1994; 99(1):112-30. PubMed ID: 7925785
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expected and unexpected head yaw movements result in different modifications of gait and whole body coordination strategies.
    Vallis LA; Patla AE
    Exp Brain Res; 2004 Jul; 157(1):94-110. PubMed ID: 15146304
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid adaptation to Coriolis force perturbations of arm trajectory.
    Lackner JR; Dizio P
    J Neurophysiol; 1994 Jul; 72(1):299-313. PubMed ID: 7965013
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Developmental aspects of the control of manual aiming movements in aligned and non-aligned visual displays.
    Lhuisset L; Proteau L
    Exp Brain Res; 2002 Oct; 146(3):293-306. PubMed ID: 12232686
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The multiple process model of goal-directed aiming/reaching: insights on limb control from various special populations.
    Elliott D; Lyons J; Hayes SJ; Burkitt JJ; Hansen S; Grierson LEM; Foster NC; Roberts JW; Bennett SJ
    Exp Brain Res; 2020 Dec; 238(12):2685-2699. PubMed ID: 33079207
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Manual asymmetries in the directional coding of reaching: further evidence for hemispatial effects and right hemisphere dominance for movement planning.
    Barthélémy S; Boulinguez P
    Exp Brain Res; 2002 Dec; 147(3):305-12. PubMed ID: 12428138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.