These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 11393357)

  • 61. Maillard reaction in food allergy: Pros and cons.
    Gupta RK; Gupta K; Sharma A; Das M; Ansari IA; Dwivedi PD
    Crit Rev Food Sci Nutr; 2018 Jan; 58(2):208-226. PubMed ID: 26980434
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Encapsulation of ascorbic acid promotes the reduction of Maillard reaction products in UHT milk.
    Troise AD; Vitiello D; Tsang C; Fiore A
    Food Funct; 2016 Jun; 7(6):2591-602. PubMed ID: 27240727
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Anti-inflammatory effect of sugar-amino acid Maillard reaction products on intestinal inflammation model in vitro and in vivo.
    Oh JG; Chun SH; Kim DH; Kim JH; Shin HS; Cho YS; Kim YK; Choi HD; Lee KW
    Carbohydr Res; 2017 Sep; 449():47-58. PubMed ID: 28728011
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Advanced glycation end products, protein crosslinks and post translational modifications in pork subjected to different heat treatments.
    Mitra B; Lametsch R; Greco I; Ruiz-Carrascal J
    Meat Sci; 2018 Nov; 145():415-424. PubMed ID: 30055433
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Glycosylation of lysine-containing pentapeptides by glucuronic acid: new insights into the Maillard reaction.
    Horvat S; Roscić M
    Carbohydr Res; 2010 Feb; 345(3):377-84. PubMed ID: 20034621
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Transepithelial flux of early and advanced glycation compounds across Caco-2 cell monolayers and their interaction with intestinal amino acid and peptide transport systems.
    Grunwald S; Krause R; Bruch M; Henle T; Brandsch M
    Br J Nutr; 2006 Jun; 95(6):1221-8. PubMed ID: 16768847
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Mixed dimers formed by crosslinking of native and glycated proteins in the absence of free sugar.
    Liggins J; Furth AJ
    Biochem Biophys Res Commun; 1996 Feb; 219(1):186-90. PubMed ID: 8619805
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Site-specific synthesis of Amadori-modified peptides on solid phase.
    Frolov A; Singer D; Hoffmann R
    J Pept Sci; 2006 Jun; 12(6):389-95. PubMed ID: 16342332
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Autoantibody against N(epsilon)-(carboxymethyl)lysine: an advanced glycation end product of the Maillard reaction.
    Shibayama R; Araki N; Nagai R; Horiuchi S
    Diabetes; 1999 Sep; 48(9):1842-9. PubMed ID: 10480617
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Monitoring the progress of non-enzymatic glycation in vitro.
    Shaw SM; Crabbe MJ
    Int J Pept Protein Res; 1994 Dec; 44(6):594-602. PubMed ID: 7705982
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Modification and Cross-Linking of Proteins by Glycolaldehyde and Glyoxal: A Model System.
    Klaus A; Rau R; Glomb MA
    J Agric Food Chem; 2018 Oct; 66(41):10835-10843. PubMed ID: 30296075
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Pyrraline ether crosslinks as a basis for protein crosslinking by the advanced Maillard reaction in aging and diabetes.
    Nagaraj RH; Portero-Otin M; Monnier VM
    Arch Biochem Biophys; 1996 Jan; 325(2):152-8. PubMed ID: 8561492
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Chromatographic assay of glycation adducts in human serum albumin glycated in vitro by derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl-carbamate and intrinsic fluorescence.
    Ahmed N; Thornalley PJ
    Biochem J; 2002 May; 364(Pt 1):15-24. PubMed ID: 11988071
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Formation and elimination of pyrraline in the Maillard reaction in a saccharide-lysine model system.
    Liang Z; Li L; Fu Q; Zhang X; Xu Z; Li B
    J Sci Food Agric; 2016 May; 96(7):2555-64. PubMed ID: 26260362
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Glycation of Lysozyme by Glycolaldehyde Provides New Mechanistic Insights in Diabetes-Related Protein Aggregation.
    Mariño L; Maya-Aguirre CA; Pauwels K; Vilanova B; Ortega-Castro J; Frau J; Donoso J; Adrover M
    ACS Chem Biol; 2017 Apr; 12(4):1152-1162. PubMed ID: 28257177
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Maillard Proteomics: Opening New Pages.
    Soboleva A; Schmidt R; Vikhnina M; Grishina T; Frolov A
    Int J Mol Sci; 2017 Dec; 18(12):. PubMed ID: 29231845
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Inhibitory effect of sugarcane molasses extract on the formation of N
    Yu P; Xu XB; Yu SJ
    Food Chem; 2017 Apr; 221():1145-1150. PubMed ID: 27979072
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Mechanism of autoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose.
    Wells-Knecht KJ; Zyzak DV; Litchfield JE; Thorpe SR; Baynes JW
    Biochemistry; 1995 Mar; 34(11):3702-9. PubMed ID: 7893666
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Capillary electrophoretic separation by double-strand polyaniline-coate capillaries of the advanced glycation endproducts formed from N-alpha-acetyl-L-lysine with reducing sugars.
    de Sa PF; Robb C; Resende E; McCarthy P; Yang SC; Brown PR; Dain JA
    J Capill Electrophor Microchip Technol; 2002; 7(3-4):61-5. PubMed ID: 12212910
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Methylglyoxal-induced modification causes aggregation of myoglobin.
    Banerjee S; Maity S; Chakraborti AS
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Feb; 155():1-10. PubMed ID: 26554310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.