These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 11393847)

  • 1. A method for chemometric classification of unknown vapors from the responses of an array of volume-transducing sensors.
    Grate JW; Wise BM
    Anal Chem; 2001 May; 73(10):2239-44. PubMed ID: 11393847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverse least-squares modeling of vapor descriptors using polymer-coated surface acoustic wave sensor array responses.
    Grate JW; Patrash SJ; Kaganovet SN; Abraham MH; Wise BM; Gallagher NB
    Anal Chem; 2001 Nov; 73(21):5247-59. PubMed ID: 11721926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fractional free volume of the sorbed vapor in modeling the viscoelastic contribution to polymer-coated surface acoustic wave vapor sensor responses.
    Grate JW; Zellers ET
    Anal Chem; 2000 Jul; 72(13):2861-8. PubMed ID: 10905319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vapor recognition with small arrays of polymer-coated microsensors. A comprehensive analysis.
    Park J; Groves WA; Zellers ET
    Anal Chem; 1999 Sep; 71(17):3877-86. PubMed ID: 10489533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal coating selection for the analysis of organic vapor mixtures with polymer-coated surface acoustic wave sensor arrays.
    Zellers ET; Batterman SA; Han M; Patrash SJ
    Anal Chem; 1995 Mar; 67(6):1092-106. PubMed ID: 7717524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of polymeric surface acoustic wave sensor coatings and semiempirical models of sensor responses to organic vapors.
    Patrash SJ; Zellers ET
    Anal Chem; 1993 Aug; 65(15):2055-66. PubMed ID: 8372969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiation of chemical components in a binary solvent vapor mixture using carbon/polymer composite-based chemiresistors.
    Patel SV; Jenkins MW; Hughes RC; Yelton WG; Ricco AJ
    Anal Chem; 2000 Apr; 72(7):1532-42. PubMed ID: 10763250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of temperature and humidity on the performance of polymer-coated surface acoustic wave vapor sensor arrays.
    Zellers ET; Han M
    Anal Chem; 1996 Jul; 68(14):2409-18. PubMed ID: 8686930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of linear solvation energy relationships for modeling responses from polymer-coated acoustic-wave vapor sensors.
    Hierlemann A; Zellers ET; Ricco AJ
    Anal Chem; 2001 Jul; 73(14):3458-66. PubMed ID: 11476248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-chemiresistor GC detector employing monolayer-protected metal nanocluster interfaces.
    Cai QY; Zellers ET
    Anal Chem; 2002 Jul; 74(14):3533-9. PubMed ID: 12139065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Establishing a limit of recognition for a vapor sensor array.
    Zellers ET; Park J; Hsu T; Groves WA
    Anal Chem; 1998 Oct; 70(19):4191-201. PubMed ID: 9784753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limits of recognition for simple vapor mixtures determined with a microsensor array.
    Hsieh MD; Zellers ET
    Anal Chem; 2004 Apr; 76(7):1885-95. PubMed ID: 15053648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen bond acidic polymers for surface acoustic wave vapor sensors and arrays.
    Grate JW; Patrash SJ; Kaganove SN; Wise BM
    Anal Chem; 1999 Mar; 71(5):1033-40. PubMed ID: 21662772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-Term Stability of Polymer-Coated Surface Transverse Wave Sensors for the Detection of Organic Solvent Vapors.
    Stahl U; Voigt A; Dirschka M; Barié N; Richter C; Waldbaur A; Gruhl FJ; Rapp BE; Rapp M; Länge K
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29099762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Personal monitoring instrument for the selective measurement of multiple organic vapors.
    Park J; Zhang GZ; Zellers ET
    AIHAJ; 2000; 61(2):192-204. PubMed ID: 10782191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, implementation, and field testing of a portable fluorescence-based vapor sensor.
    Aernecke MJ; Guo J; Sonkusale S; Walt DR
    Anal Chem; 2009 Jul; 81(13):5281-90. PubMed ID: 19563211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of spatiotemporal response information from sorption-based sensor arrays to identify and quantify the composition of analyte mixtures.
    Woodka MD; Brunschwig BS; Lewis NS
    Langmuir; 2007 Dec; 23(26):13232-41. PubMed ID: 18001074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mercury Sorption and Desorption on Gold: A Comparative Analysis of Surface Acoustic Wave and Quartz Crystal Microbalance-Based Sensors.
    Kabir KM; Sabri YM; Esmaielzadeh Kandjani A; Matthews GI; Field M; Jones LA; Nafady A; Ippolito SJ; Bhargava SK
    Langmuir; 2015 Aug; 31(30):8519-29. PubMed ID: 26169072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cataluminescence-based vapor-sensitive sensor array for discriminating flammable liquid vapors.
    Liu B; Kong H; Luo A
    Talanta; 2014 Apr; 121():43-9. PubMed ID: 24607108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection and classification of ignitable liquid residues using a fluorescence-based vapor-sensitive microsphere array.
    Aernecke MJ; Walt DR
    J Forensic Sci; 2010 Jan; 55(1):178-84. PubMed ID: 20002259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.