These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 11393863)
1. Electroosmotic flows in microchannels with finite inertial and pressure forces. Santiago JG Anal Chem; 2001 May; 73(10):2353-65. PubMed ID: 11393863 [TBL] [Abstract][Full Text] [Related]
2. Electroosmotic flow in microchannels with arbitrary geometry and arbitrary distribution of wall charge. Xuan X; Li D J Colloid Interface Sci; 2005 Sep; 289(1):291-303. PubMed ID: 16009236 [TBL] [Abstract][Full Text] [Related]
3. Derivation of governing equation describing time-dependent penetration length in channel flows driven by non-mechanical forces. Bhattacharya S; Gurung D Anal Chim Acta; 2010 May; 666(1-2):51-4. PubMed ID: 20433964 [TBL] [Abstract][Full Text] [Related]
4. Analytical solution of time periodic electroosmotic flows: analogies to Stokes' second problem. Duttat P; Beskok A Anal Chem; 2001 Nov; 73(21):5097-102. PubMed ID: 11721905 [TBL] [Abstract][Full Text] [Related]
6. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes. Chao K; Chen B; Wu J Biomed Microdevices; 2010 Dec; 12(6):959-66. PubMed ID: 20668948 [TBL] [Abstract][Full Text] [Related]
7. Conditions for similitude between the fluid velocity and electric field in electroosmotic flow. Cummings EB; Griffiths SK; Nilson RH; Paul PH Anal Chem; 2000 Jun; 72(11):2526-32. PubMed ID: 10857630 [TBL] [Abstract][Full Text] [Related]
8. Conditions for similitude and the effect of finite Debye length in electroosmotic flows. Oh JM; Kang KH J Colloid Interface Sci; 2007 Jun; 310(2):607-16. PubMed ID: 17368472 [TBL] [Abstract][Full Text] [Related]
9. Extension of the Helmholtz-Smoluchowski velocity to the hydrophobic microchannels with velocity slip. Park HM; Kim TW Lab Chip; 2009 Jan; 9(2):291-6. PubMed ID: 19107287 [TBL] [Abstract][Full Text] [Related]
10. An analysis of induced pressure fields in electroosmotic flows through microchannels. Zhang Y; Gu XJ; Barber RW; Emerson DR J Colloid Interface Sci; 2004 Jul; 275(2):670-8. PubMed ID: 15178302 [TBL] [Abstract][Full Text] [Related]
11. A method to determine zeta potential and Navier slip coefficient of microchannels. Park HM J Colloid Interface Sci; 2010 Jul; 347(1):132-41. PubMed ID: 20362996 [TBL] [Abstract][Full Text] [Related]
12. Electroosmotic Flow in Microchannels. Yang RJ; Fu LM; Lin YC J Colloid Interface Sci; 2001 Jul; 239(1):98-105. PubMed ID: 11397053 [TBL] [Abstract][Full Text] [Related]
13. Helmholtz-Smoluchowski velocity for viscoelastic electroosmotic flows. Park HM; Lee WM J Colloid Interface Sci; 2008 Jan; 317(2):631-6. PubMed ID: 17935728 [TBL] [Abstract][Full Text] [Related]
14. Flow behavior of periodical electroosmosis in microchannel for biochips. Wang X; Wu J J Colloid Interface Sci; 2006 Jan; 293(2):483-8. PubMed ID: 16061240 [TBL] [Abstract][Full Text] [Related]
15. Modeling electroosmotic and pressure-driven flows in porous microfluidic devices: zeta potential and porosity changes near the channel walls. Scales N; Tait RN J Chem Phys; 2006 Sep; 125(9):094714. PubMed ID: 16965112 [TBL] [Abstract][Full Text] [Related]
16. Modeling of combined electroosmotic and capillary flow in microchannels. Waghmare PR; Mitra SK Anal Chim Acta; 2010 Mar; 663(2):117-26. PubMed ID: 20206000 [TBL] [Abstract][Full Text] [Related]
17. Electrokinetic secondary-flow behavior in a curved microchannel under dissimilar surface conditions. Chun MS Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036312. PubMed ID: 21517592 [TBL] [Abstract][Full Text] [Related]
18. Electroosmotic flow in a water column surrounded by an immiscible liquid. Movahed S; Khani S; Wen JZ; Li D J Colloid Interface Sci; 2012 Apr; 372(1):207-11. PubMed ID: 22336326 [TBL] [Abstract][Full Text] [Related]
19. Frequency-dependent laminar electroosmotic flow in a closed-end rectangular microchannel. Marcos ; Yang C; Ooi KT; Wong TN; Masliyah JH J Colloid Interface Sci; 2004 Jul; 275(2):679-98. PubMed ID: 15178303 [TBL] [Abstract][Full Text] [Related]
20. Laminar, turbulent, and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions. Lashgari I; Picano F; Breugem WP; Brandt L Phys Rev Lett; 2014 Dec; 113(25):254502. PubMed ID: 25554885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]