These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 11393888)

  • 1. Treatment planning for heavy-ion radiotherapy: biological optimization of multiple beam ports.
    Krämer M
    J Radiat Res; 2001 Mar; 42(1):39-46. PubMed ID: 11393888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatment planning for heavy ion radiotherapy: clinical implementation and application.
    Jäkel O; Krämer M; Karger CP; Debus J
    Phys Med Biol; 2001 Apr; 46(4):1101-16. PubMed ID: 11324954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treatment planning for scanned ion beams.
    Krämer M; Jäkel O; Haberer T; Rietzel E; Schardt D; Scholz M; Wang JF; Weber U; Weyrather W
    Radiother Oncol; 2004 Dec; 73 Suppl 2():S80-5. PubMed ID: 15971316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment planning for heavy-ion radiotherapy: calculation and optimization of biologically effective dose.
    Krämer M; Scholz M
    Phys Med Biol; 2000 Nov; 45(11):3319-30. PubMed ID: 11098906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-invasive monitoring of therapeutic carbon ion beams in a homogeneous phantom by tracking of secondary ions.
    Gwosch K; Hartmann B; Jakubek J; Granja C; Soukup P; Jäkel O; Martišíková M
    Phys Med Biol; 2013 Jun; 58(11):3755-73. PubMed ID: 23665924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a fast multileaf collimator for radiobiological optimized IMRT with scanned beams of photons, electrons, and light ions.
    Svensson R; Larsson S; Gudowska I; Holmberg R; Brahme A
    Med Phys; 2007 Mar; 34(3):877-88. PubMed ID: 17441233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A TPS kernel for calculating survival vs. depth: distributions in a carbon radiotherapy beam, based on Katz's cellular Track Structure Theory.
    Waligórski MP; Grzanka L; Korcyl M; Olko P
    Radiat Prot Dosimetry; 2015 Sep; 166(1-4):347-50. PubMed ID: 25911403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Helium ions for radiotherapy? Physical and biological verifications of a novel treatment modality.
    Krämer M; Scifoni E; Schuy C; Rovituso M; Tinganelli W; Maier A; Kaderka R; Kraft-Weyrather W; Brons S; Tessonnier T; Parodi K; Durante M
    Med Phys; 2016 Apr; 43(4):1995. PubMed ID: 27036594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Worst case optimization for interfractional motion mitigation in carbon ion therapy of pancreatic cancer.
    Steitz J; Naumann P; Ulrich S; Haefner MF; Sterzing F; Oelfke U; Bangert M
    Radiat Oncol; 2016 Oct; 11(1):134. PubMed ID: 27717378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementation of a triple Gaussian beam model with subdivision and redefinition against density heterogeneities in treatment planning for scanned carbon-ion radiotherapy.
    Inaniwa T; Kanematsu N; Hara Y; Furukawa T; Fukahori M; Nakao M; Shirai T
    Phys Med Biol; 2014 Sep; 59(18):5361-86. PubMed ID: 25157579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specifying carbon ion doses for radiotherapy: the heidelberg approach.
    Jäkel O; Schulz-Ertner D; Debus J
    J Radiat Res; 2007; 48 Suppl A():A87-95. PubMed ID: 17513904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of the relative biological effectiveness for ion beam radiotherapy: direct experimental comparison of proton and carbon ion beams and a novel approach for treatment planning.
    Elsässer T; Weyrather WK; Friedrich T; Durante M; Iancu G; Krämer M; Kragl G; Brons S; Winter M; Weber KJ; Scholz M
    Int J Radiat Oncol Biol Phys; 2010 Nov; 78(4):1177-83. PubMed ID: 20732758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First experimental-based characterization of oxygen ion beam depth dose distributions at the Heidelberg Ion-Beam Therapy Center.
    Kurz C; Mairani A; Parodi K
    Phys Med Biol; 2012 Aug; 57(15):5017-34. PubMed ID: 22805295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The increased biological effectiveness of heavy charged particles: from radiobiology to treatment planning.
    Krämer M; Weyrather WK; Scholz M
    Technol Cancer Res Treat; 2003 Oct; 2(5):427-36. PubMed ID: 14529307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EUD-based biological optimization for carbon ion therapy.
    Brüningk SC; Kamp F; Wilkens JJ
    Med Phys; 2015 Nov; 42(11):6248-57. PubMed ID: 26520717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological dose optimization with multiple ion fields.
    Gemmel A; Hasch B; Ellerbrock M; Weyrather WK; Krämer M
    Phys Med Biol; 2008 Dec; 53(23):6991-7012. PubMed ID: 19001692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion therapy of prostate cancer: daily rectal dose reduction by application of spacer gel.
    Rucinski A; Brons S; Richter D; Habl G; Debus J; Bert C; Haberer T; Jäkel O
    Radiat Oncol; 2015 Feb; 10():56. PubMed ID: 25886457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treatment Planning Studies in Patient Data With Scanned Carbon Ion Beams for Catheter-Free Ablation of Atrial Fibrillation.
    Constantinescu A; Lehmann HI; Packer DL; Bert C; Durante M; Graeff C
    J Cardiovasc Electrophysiol; 2016 Mar; 27(3):335-44. PubMed ID: 26638826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic splitting of Gaussian pencil beams in heterogeneity-correction algorithms for radiotherapy with heavy charged particles.
    Kanematsu N; Komori M; Yonai S; Ishizaki A
    Phys Med Biol; 2009 Apr; 54(7):2015-27. PubMed ID: 19287085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of potential advantages of relevant ions for particle therapy: a model based study.
    Grün R; Friedrich T; Krämer M; Zink K; Durante M; Engenhart-Cabillic R; Scholz M
    Med Phys; 2015 Feb; 42(2):1037-47. PubMed ID: 25652516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.