These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 11394772)
1. Equilibrium and kinetics of metal ion adsorption onto a commercial H-type granular activated carbon: experimental and modeling studies. Chen JP; Lin M Water Res; 2001 Jul; 35(10):2385-94. PubMed ID: 11394772 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous adsorption of copper ions and humic acid onto an activated carbon. Chen JP; Wu S J Colloid Interface Sci; 2004 Dec; 280(2):334-42. PubMed ID: 15533405 [TBL] [Abstract][Full Text] [Related]
4. Modelling equilibrium adsorption of single, binary, and ternary combinations of Cu, Pb, and Zn onto granular activated carbon. Loganathan P; Shim WG; Sounthararajah DP; Kalaruban M; Nur T; Vigneswaran S Environ Sci Pollut Res Int; 2018 Jun; 25(17):16664-16675. PubMed ID: 29603104 [TBL] [Abstract][Full Text] [Related]
5. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell. Peng SH; Wang R; Yang LZ; He L; He X; Liu X Ecotoxicol Environ Saf; 2018 Dec; 165():61-69. PubMed ID: 30193165 [TBL] [Abstract][Full Text] [Related]
6. Characterization of chemically modified corncobs and its application in the removal of metal ions from aqueous solution. Nasiruddin Khan M; Farooq Wahab M J Hazard Mater; 2007 Mar; 141(1):237-44. PubMed ID: 16911857 [TBL] [Abstract][Full Text] [Related]
7. Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash. Pehlivan E; Cetin S; Yanik BH J Hazard Mater; 2006 Jul; 135(1-3):193-9. PubMed ID: 16368188 [TBL] [Abstract][Full Text] [Related]
8. Adsorption behavior of zinc and cadmium ion on granular activated carbon in singular and binary systems and the influence of nitrilotricetic acid as a complexing agent. Choi JY; Kim DS J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002 Oct; 37(9):1701-19. PubMed ID: 12403018 [TBL] [Abstract][Full Text] [Related]
9. Experimental measurement of proton, Cd, Pb, Sr, and Zn adsorption onto the fungal species Saccharomyces cerevisiae. Naeem A; Woertz JR; Fein JB Environ Sci Technol; 2006 Sep; 40(18):5724-9. PubMed ID: 17007132 [TBL] [Abstract][Full Text] [Related]
10. Multi-component sorption of Pb(II), Cu(II) and Zn(II) onto low-cost mineral adsorbent. Prasad M; Xu HY; Saxena S J Hazard Mater; 2008 Jun; 154(1-3):221-9. PubMed ID: 18082944 [TBL] [Abstract][Full Text] [Related]
11. Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions. Jiang S; Huang L; Nguyen TA; Ok YS; Rudolph V; Yang H; Zhang D Chemosphere; 2016 Jan; 142():64-71. PubMed ID: 26206747 [TBL] [Abstract][Full Text] [Related]
12. Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. Anirudhan TS; Sreekumari SS J Environ Sci (China); 2011; 23(12):1989-98. PubMed ID: 22432329 [TBL] [Abstract][Full Text] [Related]
13. Preparation of granular activated carbons from composite of powder activated carbon and modified β-zeolite and application to heavy metals removal. Seyedein Ghannad SMR; Lotfollahi MN Water Sci Technol; 2018 Mar; 77(5-6):1591-1601. PubMed ID: 29595161 [TBL] [Abstract][Full Text] [Related]
14. Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies. Reddad Z; Gerente C; Andres Y; Le Cloirec P Environ Sci Technol; 2002 May; 36(9):2067-73. PubMed ID: 12026994 [TBL] [Abstract][Full Text] [Related]
15. An economically viable method for the removal of selected divalent metal ions from aqueous solutions using activated rice husk. Akhtar M; Iqbal S; Kausar A; Bhanger MI; Shaheen MA Colloids Surf B Biointerfaces; 2010 Jan; 75(1):149-55. PubMed ID: 19734025 [TBL] [Abstract][Full Text] [Related]
16. Modeling of heavy metals removal from aqueous solution using activated carbon produced from cotton stalk. El Zayat M; Smith E Water Sci Technol; 2013; 67(7):1612-9. PubMed ID: 23552252 [TBL] [Abstract][Full Text] [Related]
17. Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Kobya M; Demirbas E; Senturk E; Ince M Bioresour Technol; 2005 Sep; 96(13):1518-21. PubMed ID: 15939281 [TBL] [Abstract][Full Text] [Related]
18. Adsorption of lead, copper and zinc in a multi-metal aqueous solution by waste rubber tires for the design of single batch adsorber. Cherono F; Mburu N; Kakoi B Heliyon; 2021 Nov; 7(11):e08254. PubMed ID: 34765777 [TBL] [Abstract][Full Text] [Related]
19. Equilibrium analysis for heavy metal cation removal using cement kiln dust. El Zayat M; Elagroudy S; El Haggar S Water Sci Technol; 2014; 70(6):1011-8. PubMed ID: 25259489 [TBL] [Abstract][Full Text] [Related]
20. Adsorption characteristics of copper, lead, zinc and cadmium ions by tourmaline. Jiang K; Sun TH; Sun LN; Li HB J Environ Sci (China); 2006; 18(6):1221-5. PubMed ID: 17294969 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]