These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 11395008)

  • 1. Drosophila Hsc70-4 is critical for neurotransmitter exocytosis in vivo.
    Bronk P; Wenniger JJ; Dawson-Scully K; Guo X; Hong S; Atwood HL; Zinsmaier KE
    Neuron; 2001 May; 30(2):475-88. PubMed ID: 11395008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cysteine string protein is required for calcium secretion coupling of evoked neurotransmission in drosophila but not for vesicle recycling.
    Ranjan R; Bronk P; Zinsmaier KE
    J Neurosci; 1998 Feb; 18(3):956-64. PubMed ID: 9437017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cysteine-string protein increases the calcium sensitivity of neurotransmitter exocytosis in Drosophila.
    Dawson-Scully K; Bronk P; Atwood HL; Zinsmaier KE
    J Neurosci; 2000 Aug; 20(16):6039-47. PubMed ID: 10934253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AP180 maintains the distribution of synaptic and vesicle proteins in the nerve terminal and indirectly regulates the efficacy of Ca2+-triggered exocytosis.
    Bao H; Daniels RW; MacLeod GT; Charlton MP; Atwood HL; Zhang B
    J Neurophysiol; 2005 Sep; 94(3):1888-903. PubMed ID: 15888532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The multiple functions of cysteine-string protein analyzed at Drosophila nerve terminals.
    Bronk P; Nie Z; Klose MK; Dawson-Scully K; Zhang J; Robertson RM; Atwood HL; Zinsmaier KE
    J Neurosci; 2005 Mar; 25(9):2204-14. PubMed ID: 15745946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of cysteine-string proteins in Drosophila reveals interactions with syntaxin.
    Nie Z; Ranjan R; Wenniger JJ; Hong SN; Bronk P; Zinsmaier KE
    J Neurosci; 1999 Dec; 19(23):10270-9. PubMed ID: 10575024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two distinct domains in hsc70 are essential for the interaction with the synaptic vesicle cysteine string protein.
    Stahl B; Tobaben S; Südhof TC
    Eur J Cell Biol; 1999 Jun; 78(6):375-81. PubMed ID: 10430018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional role of J domain of cysteine string protein in Ca2+-dependent secretion from acinar cells.
    Weng N; Baumler MD; Thomas DD; Falkowski MA; Swayne LA; Braun JE; Groblewski GE
    Am J Physiol Gastrointest Liver Physiol; 2009 May; 296(5):G1030-9. PubMed ID: 19282376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological and functional effects of altered cysteine string protein at the Drosophila larval neuromuscular junction.
    Dawson-Scully K; Lin Y; Imad M; Zhang J; Marin L; Horne JA; Meinertzhagen IA; Karunanithi S; Zinsmaier KE; Atwood HL
    Synapse; 2007 Jan; 61(1):1-16. PubMed ID: 17068777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of the ATPase activity of heat-shock proteins Hsc70/Hsp70 by cysteine-string protein.
    Chamberlain LH; Burgoyne RD
    Biochem J; 1997 Mar; 322 ( Pt 3)(Pt 3):853-8. PubMed ID: 9148760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A trimeric protein complex functions as a synaptic chaperone machine.
    Tobaben S; Thakur P; Fernández-Chacón R; Südhof TC; Rettig J; Stahl B
    Neuron; 2001 Sep; 31(6):987-99. PubMed ID: 11580898
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cysteine-string protein: the chaperone at the synapse.
    Chamberlain LH; Burgoyne RD
    J Neurochem; 2000 May; 74(5):1781-9. PubMed ID: 10800920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cysteine string secretory vesicle protein activates Hsc70 ATPase.
    Braun JE; Wilbanks SM; Scheller RH
    J Biol Chem; 1996 Oct; 271(42):25989-93. PubMed ID: 8824236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presynaptic dysfunction in Drosophila csp mutants.
    Umbach JA; Zinsmaier KE; Eberle KK; Buchner E; Benzer S; Gundersen CB
    Neuron; 1994 Oct; 13(4):899-907. PubMed ID: 7946336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presynaptic calcium-channel currents in normal and csp mutant Drosophila peptidergic terminals.
    Morales M; Ferrús A; Martínez-Padrón M
    Eur J Neurosci; 1999 May; 11(5):1818-26. PubMed ID: 10215934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that cysteine string proteins regulate an early step in the Ca2+-dependent secretion of neurotransmitter at Drosophila neuromuscular junctions.
    Umbach JA; Gundersen CB
    J Neurosci; 1997 Oct; 17(19):7203-9. PubMed ID: 9295366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular chaperones and the regulation of neurotransmitter exocytosis.
    Zinsmaier KE; Bronk P
    Biochem Pharmacol; 2001 Jul; 62(1):1-11. PubMed ID: 11377391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The molecular chaperone function of the secretory vesicle cysteine string proteins.
    Chamberlain LH; Burgoyne RD
    J Biol Chem; 1997 Dec; 272(50):31420-6. PubMed ID: 9395474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The DnaJ-like cysteine string protein and exocytotic neurotransmitter release.
    Buchner E; Gundersen CB
    Trends Neurosci; 1997 May; 20(5):223-7. PubMed ID: 9141199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evoked transmitter release at neuromuscular junctions in wild type and cysteine string protein null mutant larvae of Drosophila.
    Heckmann M; Adelsberger H; Dudel J
    Neurosci Lett; 1997 Jun; 228(3):167-70. PubMed ID: 9218634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.