These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 11395522)
1. Functional groups required for the stability of yeast RNA triphosphatase in vitro and in vivo. Bisaillon M; Shuman S J Biol Chem; 2001 Aug; 276(32):30514-20. PubMed ID: 11395522 [TBL] [Abstract][Full Text] [Related]
2. Structure-function analysis of the active site tunnel of yeast RNA triphosphatase. Bisaillon M; Shuman S J Biol Chem; 2001 May; 276(20):17261-6. PubMed ID: 11279161 [TBL] [Abstract][Full Text] [Related]
3. Homodimeric quaternary structure is required for the in vivo function and thermal stability of Saccharomyces cerevisiae and Schizosaccharomyces pombe RNA triphosphatases. Hausmann S; Pei Y; Shuman S J Biol Chem; 2003 Aug; 278(33):30487-96. PubMed ID: 12788946 [TBL] [Abstract][Full Text] [Related]
4. Importance of homodimerization for the in vivo function of yeast RNA triphosphatase. Lehman K; Ho CK; Shuman S J Biol Chem; 2001 May; 276(18):14996-5002. PubMed ID: 11279098 [TBL] [Abstract][Full Text] [Related]
5. Structure-function analysis of Plasmodium RNA triphosphatase and description of a triphosphate tunnel metalloenzyme superfamily that includes Cet1-like RNA triphosphatases and CYTH proteins. Gong C; Smith P; Shuman S RNA; 2006 Aug; 12(8):1468-74. PubMed ID: 16809816 [TBL] [Abstract][Full Text] [Related]
6. A conserved domain of yeast RNA triphosphatase flanking the catalytic core regulates self-association and interaction with the guanylyltransferase component of the mRNA capping apparatus. Lehman K; Schwer B; Ho CK; Rouzankina I; Shuman S J Biol Chem; 1999 Aug; 274(32):22668-78. PubMed ID: 10428848 [TBL] [Abstract][Full Text] [Related]
7. An essential function of Saccharomyces cerevisiae RNA triphosphatase Cet1 is to stabilize RNA guanylyltransferase Ceg1 against thermal inactivation. Hausmann S; Ho CK; Schwer B; Shuman S J Biol Chem; 2001 Sep; 276(39):36116-24. PubMed ID: 11463793 [TBL] [Abstract][Full Text] [Related]
8. Mutational analyses of yeast RNA triphosphatases highlight a common mechanism of metal-dependent NTP hydrolysis and a means of targeting enzymes to pre-mRNAs in vivo by fusion to the guanylyltransferase component of the capping apparatus. Pei Y; Ho CK; Schwer B; Shuman S J Biol Chem; 1999 Oct; 274(41):28865-74. PubMed ID: 10506129 [TBL] [Abstract][Full Text] [Related]
9. Genetic, physical, and functional interactions between the triphosphatase and guanylyltransferase components of the yeast mRNA capping apparatus. Ho CK; Schwer B; Shuman S Mol Cell Biol; 1998 Sep; 18(9):5189-98. PubMed ID: 9710603 [TBL] [Abstract][Full Text] [Related]
10. Chlorella virus RNA triphosphatase. Mutational analysis and mechanism of inhibition by tripolyphosphate. Gong C; Shuman S J Biol Chem; 2002 May; 277(18):15317-24. PubMed ID: 11844801 [TBL] [Abstract][Full Text] [Related]
11. Structure and mechanism of yeast RNA triphosphatase: an essential component of the mRNA capping apparatus. Lima CD; Wang LK; Shuman S Cell; 1999 Nov; 99(5):533-43. PubMed ID: 10589681 [TBL] [Abstract][Full Text] [Related]
12. Investigating the role of metal ions in the catalytic mechanism of the yeast RNA triphosphatase. Bisaillon M; Bougie I J Biol Chem; 2003 Sep; 278(36):33963-71. PubMed ID: 12819229 [TBL] [Abstract][Full Text] [Related]
13. Localization and in vitro mutagenesis of the active site in the Saccharomyces cerevisiae mRNA capping enzyme. Shibagaki Y; Gotoh H; Kato M; Mizumoto K J Biochem; 1995 Dec; 118(6):1303-9. PubMed ID: 8720151 [TBL] [Abstract][Full Text] [Related]
14. Characterization of Candida albicans RNA triphosphatase and mutational analysis of its active site. Pei Y; Lehman K; Tian L; Shuman S Nucleic Acids Res; 2000 May; 28(9):1885-92. PubMed ID: 10756187 [TBL] [Abstract][Full Text] [Related]
15. A yeast-based genetic system for functional analysis of viral mRNA capping enzymes. Ho CK; Martins A; Shuman S J Virol; 2000 Jun; 74(12):5486-94. PubMed ID: 10823853 [TBL] [Abstract][Full Text] [Related]
16. The essential interaction between yeast mRNA capping enzyme subunits is not required for triphosphatase function in vivo. Takase Y; Takagi T; Komarnitsky PB; Buratowski S Mol Cell Biol; 2000 Dec; 20(24):9307-16. PubMed ID: 11094081 [TBL] [Abstract][Full Text] [Related]
17. Mapping the triphosphatase active site of baculovirus mRNA capping enzyme LEF4 and evidence for a two-metal mechanism. Martins A; Shuman S Nucleic Acids Res; 2003 Mar; 31(5):1455-63. PubMed ID: 12595553 [TBL] [Abstract][Full Text] [Related]
18. Mapping the active site of vaccinia virus RNA triphosphatase. Gong C; Shuman S Virology; 2003 Apr; 309(1):125-34. PubMed ID: 12726733 [TBL] [Abstract][Full Text] [Related]
19. An essential surface motif (WAQKW) of yeast RNA triphosphatase mediates formation of the mRNA capping enzyme complex with RNA guanylyltransferase. Ho CK; Lehman K; Shuman S Nucleic Acids Res; 1999 Dec; 27(24):4671-8. PubMed ID: 10572165 [TBL] [Abstract][Full Text] [Related]
20. Yeast and viral RNA 5' triphosphatases comprise a new nucleoside triphosphatase family. Ho CK; Pei Y; Shuman S J Biol Chem; 1998 Dec; 273(51):34151-6. PubMed ID: 9852075 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]