BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 11395570)

  • 21. Membrane transport of camptothecin: facilitation by human P-glycoprotein (ABCB1) and multidrug resistance protein 2 (ABCC2).
    Lalloo AK; Luo FR; Guo A; Paranjpe PV; Lee SH; Vyas V; Rubin E; Sinko PJ
    BMC Med; 2004 May; 2():16. PubMed ID: 15125776
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transport characteristics of tryptanthrin and its inhibitory effect on P-gp and MRP2 in Caco-2 cells.
    Zhu X; Zhang X; Ma G; Yan J; Wang H; Yang Q
    J Pharm Pharm Sci; 2011; 14(3):325-35. PubMed ID: 21824448
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Factors involved in prolongation of the terminal disposition phase of SN-38: clinical and experimental studies.
    Kehrer DF; Yamamoto W; Verweij J; de Jonge MJ; de Bruijn P; Sparreboom A
    Clin Cancer Res; 2000 Sep; 6(9):3451-8. PubMed ID: 10999728
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biliary excretion mechanism of CPT-11 and its metabolites in humans: involvement of primary active transporters.
    Chu XY; Kato Y; Ueda K; Suzuki H; Niinuma K; Tyson CA; Weizer V; Dabbs JE; Froehlich R; Green CE; Sugiyama Y
    Cancer Res; 1998 Nov; 58(22):5137-43. PubMed ID: 9823324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biliary excretion of irinotecan and its metabolites.
    Itoh T; Takemoto I; Itagaki S; Sasaki K; Hirano T; Iseki K
    J Pharm Pharm Sci; 2004 Jan; 7(1):13-8. PubMed ID: 15144730
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intestinal alkalization as a possible preventive mechanism in irinotecan (CPT-11)-induced diarrhea.
    Ikegami T; Ha L; Arimori K; Latham P; Kobayashi K; Ceryak S; Matsuzaki Y; Bouscarel B
    Cancer Res; 2002 Jan; 62(1):179-87. PubMed ID: 11782376
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiplicity of biliary excretion mechanisms for irinotecan, CPT-11, and its metabolites in rats.
    Chu XY; Kato Y; Sugiyama Y
    Cancer Res; 1997 May; 57(10):1934-8. PubMed ID: 9157988
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pharmacokinetic changes of irinotecan by intestinal alkalinization in an advanced colorectal cancer patient.
    Hamada A; Aoki A; Terazaki H; Ito K; Yokoo K; Sasaki Y; Saito H
    Ther Drug Monit; 2005 Aug; 27(4):536-8. PubMed ID: 16044114
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Clinical pharmacokinetics of irinotecan and its metabolites: a population analysis.
    Xie R; Mathijssen RH; Sparreboom A; Verweij J; Karlsson MO
    J Clin Oncol; 2002 Aug; 20(15):3293-301. PubMed ID: 12149304
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ATP-Dependent efflux of CPT-11 and SN-38 by the multidrug resistance protein (MRP) and its inhibition by PAK-104P.
    Chen ZS; Furukawa T; Sumizawa T; Ono K; Ueda K; Seto K; Akiyama SI
    Mol Pharmacol; 1999 May; 55(5):921-8. PubMed ID: 10220571
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Uptake of irinotecan metabolite SN-38 by the human intestinal cell line Caco-2.
    Itoh T; Itagaki S; Sumi Y; Hirano T; Takemoto I; Iseki K
    Cancer Chemother Pharmacol; 2005 May; 55(5):420-4. PubMed ID: 15565324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasma pharmacokinetics of 7-ethyl-10-hydroxycamptothecin (SN-38) after intravenous administration of SN-38 and irinotecan (CPT-11) to rats.
    Kaneda N; Hosokawa Y; Yokokura T; Awazu S
    Biol Pharm Bull; 1997 Sep; 20(9):992-6. PubMed ID: 9331983
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The transformation of irinotecan (CPT-11) to its active metabolite SN-38 by human liver microsomes. Differential hydrolysis for the lactone and carboxylate forms.
    Haaz MC; Rivory LP; Riché C; Robert J
    Naunyn Schmiedebergs Arch Pharmacol; 1997 Aug; 356(2):257-62. PubMed ID: 9272733
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Active apical secretory efflux of the HIV protease inhibitors saquinavir and ritonavir in Caco-2 cell monolayers.
    Alsenz J; Steffen H; Alex R
    Pharm Res; 1998 Mar; 15(3):423-8. PubMed ID: 9563072
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of secretory intestinal transport of the lactone form of CPT-11.
    Takemoto I; Itagaki S; Chiba M; Itoh T; Hirano T; Iseki K
    Cancer Chemother Pharmacol; 2006 Jan; 57(1):129-33. PubMed ID: 16003561
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cellular Uptake and Transport Characteristics of FL118 Derivatives in Caco-2 Cell Monolayers.
    Zhou Y; Hu W; Zhang X; Wang Y; Zhuang W; Li F; Li Q
    Chem Pharm Bull (Tokyo); 2021; 69(11):1054-1060. PubMed ID: 34719586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transport characteristics of fexofenadine in the Caco-2 cell model.
    Petri N; Tannergren C; Rungstad D; Lennernäs H
    Pharm Res; 2004 Aug; 21(8):1398-404. PubMed ID: 15359574
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transport characteristics of ebastine and its metabolites across human intestinal epithelial Caco-2 cell monolayers.
    Imamura Y; Shimizu K; Yamashita F; Yamaoka K; Takakura Y; Hashida M
    Biol Pharm Bull; 2001 Aug; 24(8):930-4. PubMed ID: 11510488
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biliary transport of irinotecan and metabolites in normal and P-glycoprotein-deficient mice.
    Iyer L; Ramírez J; Shepard DR; Bingham CM; Hossfeld DK; Ratain MJ; Mayer U
    Cancer Chemother Pharmacol; 2002 Apr; 49(4):336-41. PubMed ID: 11914914
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effective irinotecan (CPT-11)-containing liposomes: intraliposomal conversion to the active metabolite SN-38.
    Sadzuka Y; Hirotsu S; Hirota S
    Jpn J Cancer Res; 1999 Feb; 90(2):226-32. PubMed ID: 10189894
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.