These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 11395762)

  • 1. Fabry - Perot interference in a nanotube electron waveguide.
    Liang W; Bockrath M; Bozovic D; Hafner JH; Tinkham M; Park H
    Nature; 2001 Jun; 411(6838):665-9. PubMed ID: 11395762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suspended carbon nanotube quantum wires with two gates.
    Cao J; Wang Q; Wang D; Dai H
    Small; 2005 Jan; 1(1):138-41. PubMed ID: 17193364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport spectroscopy of chemical nanostructures: the case of metallic single-walled carbon nanotubes.
    Liang W; Bockrath M; Park H
    Annu Rev Phys Chem; 2005; 56():475-90. PubMed ID: 15796708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular electronic devices based on single-walled carbon nanotube electrodes.
    Feldman AK; Steigerwald ML; Guo X; Nuckolls C
    Acc Chem Res; 2008 Dec; 41(12):1731-41. PubMed ID: 18798657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anode distance effect on field electron emission from carbon nanotubes: a molecular/quantum mechanical simulation.
    He C; Wang W; Deng S; Xu N; Li Z; Chen G; Peng J
    J Phys Chem A; 2009 Jun; 113(25):7048-53. PubMed ID: 19534558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonant electron scattering by defects in single-walled carbon nanotubes.
    Bockrath M; Liang W; Bozovic D; Hafner JH; Lieber CM; Tinkham M; Park H
    Science; 2001 Jan; 291(5502):283-5. PubMed ID: 11209073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Miniature organic transistors with carbon nanotubes as quasi-one-dimensional electrodes.
    Qi P; Javey A; Rolandi M; Wang Q; Yenilmez E; Dai H
    J Am Chem Soc; 2004 Sep; 126(38):11774-5. PubMed ID: 15382895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon nanotube, graphene, nanowire, and molecule-based electron and spin transport phenomena using the nonequilibrium Green's function method at the level of first principles theory.
    Kim WY; Kim KS
    J Comput Chem; 2008 May; 29(7):1073-83. PubMed ID: 18072178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes.
    Kang SJ; Kocabas C; Ozel T; Shim M; Pimparkar N; Alam MA; Rotkin SV; Rogers JA
    Nat Nanotechnol; 2007 Apr; 2(4):230-6. PubMed ID: 18654268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional imaging of electronic wavefunctions in carbon nanotubes.
    Lemay SG; Janssen JW; van den Hout M; Mooij M; Bronikowski MJ; Willis PA; Smalley RE; Kouwenhoven LP; Dekker C
    Nature; 2001 Aug; 412(6847):617-20. PubMed ID: 11493914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase.
    Glover WJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical and biochemical sensing with modified single walled carbon nanotubes.
    Davis JJ; Coleman KS; Azamian BR; Bagshaw CB; Green ML
    Chemistry; 2003 Aug; 9(16):3732-9. PubMed ID: 12916096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study of the structures and electronic properties of all-surface KI and CsI nanocrystals encapsulated in single walled carbon nanotubes.
    Bichoutskaia E; Pyper NC
    J Chem Phys; 2008 Oct; 129(15):154701. PubMed ID: 19045212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron-hole symmetry in a semiconducting carbon nanotube quantum dot.
    Jarillo-Herrero P; Sapmaz S; Dekker C; Kouwenhoven LP; Van Der Zant HS
    Nature; 2004 May; 429(6990):389-92. PubMed ID: 15164056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Guiding electrical current in nanotube circuits using structural defects: a step forward in nanoelectronics.
    Romo-Herrera JM; Terrones M; Terrones H; Meunier V
    ACS Nano; 2008 Dec; 2(12):2585-91. PubMed ID: 19206295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetoresistance devices based on single-walled carbon nanotubes.
    Hod O; Rabani E; Baer R
    J Chem Phys; 2005 Aug; 123(5):051103. PubMed ID: 16108619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding quantum interference in coherent molecular conduction.
    Solomon GC; Andrews DQ; Hansen T; Goldsmith RH; Wasielewski MR; Van Duyne RP; Ratner MA
    J Chem Phys; 2008 Aug; 129(5):054701. PubMed ID: 18698915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromechanical response of single-walled carbon nanotubes to torsional strain in a self-contained device.
    Hall AR; Falvo MR; Superfine R; Washburn S
    Nat Nanotechnol; 2007 Jul; 2(7):413-6. PubMed ID: 18654324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase-coherent transport in graphene quantum billiards.
    Miao F; Wijeratne S; Zhang Y; Coskun UC; Bao W; Lau CN
    Science; 2007 Sep; 317(5844):1530-3. PubMed ID: 17872440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.