BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 11395924)

  • 1. Na+ effects on mitochondrial respiration and oxidative phosphorylation in diabetic hearts.
    Babsky A; Doliba N; Doliba N; Savchenko A; Wehrli S; Osbakken M
    Exp Biol Med (Maywood); 2001 Jun; 226(6):543-51. PubMed ID: 11395924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Sodium in Diabetic Cardiomyopathy.
    Doliba NM; Babsky AM; Osbakken MD
    Front Physiol; 2018; 9():1473. PubMed ID: 30405433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic control of sodium transport in streptozotocin-induced diabetic rat hearts.
    Doliba NM; Babsky AM; Wehrli SL; Ivanics TM; Friedman MF; Osbakken MD
    Biochemistry (Mosc); 2000 Apr; 65(4):502-8. PubMed ID: 10810190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A role for the mitochondrial Na(+)-Ca2+ exchanger in the regulation of oxidative phosphorylation in isolated heart mitochondria.
    Cox DA; Matlib MA
    J Biol Chem; 1993 Jan; 268(2):938-47. PubMed ID: 8419373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart.
    Pham T; Loiselle D; Power A; Hickey AJ
    Am J Physiol Cell Physiol; 2014 Sep; 307(6):C499-507. PubMed ID: 24920675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms underlying depressed Na+/Ca2+ exchanger activity in the diabetic heart.
    Schaffer SW; Ballard-Croft C; Boerth S; Allo SN
    Cardiovasc Res; 1997 Apr; 34(1):129-36. PubMed ID: 9217882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct evidence for a role of intramitochondrial Ca2+ in the regulation of oxidative phosphorylation in the stimulated rat heart. Studies using 31P n.m.r. and ruthenium red.
    Unitt JF; McCormack JG; Reid D; MacLachlan LK; England PJ
    Biochem J; 1989 Aug; 262(1):293-301. PubMed ID: 2479373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limiting sarcolemmal Na+ entry during resuscitation from ventricular fibrillation prevents excess mitochondrial Ca2+ accumulation and attenuates myocardial injury.
    Wang S; Radhakrishnan J; Ayoub IM; Kolarova JD; Taglieri DM; Gazmuri RJ
    J Appl Physiol (1985); 2007 Jul; 103(1):55-65. PubMed ID: 17431086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Ca2+ ions in the regulation of intramitochondrial metabolism in rat heart. Evidence from studies with isolated mitochondria that adrenaline activates the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes by increasing the intramitochondrial concentration of Ca2+.
    McCormack JG; Denton RM
    Biochem J; 1984 Feb; 218(1):235-47. PubMed ID: 6424656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective inhibition of Na+-induced Ca2+ release from heart mitochondria by diltiazem and certain other Ca2+ antagonist drugs.
    VĂ¡ghy PL; Johnson JD; Matlib MA; Wang T; Schwartz A
    J Biol Chem; 1982 Jun; 257(11):6000-2. PubMed ID: 6176579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial permeability transition in the diabetic heart: contributions of thiol redox state and mitochondrial calcium to augmented reperfusion injury.
    Sloan RC; Moukdar F; Frasier CR; Patel HD; Bostian PA; Lust RM; Brown DA
    J Mol Cell Cardiol; 2012 May; 52(5):1009-18. PubMed ID: 22406429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial oxidative phosphorylation in hearts subjected to Ca2+ depletion and Ca2+ repletion.
    Makazan Z; Saini-Chohan HK; Dhalla NS
    Can J Physiol Pharmacol; 2009 Oct; 87(10):789-97. PubMed ID: 19898561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered [Ca2+]i mobilization in diabetic cardiomyocytes: responses to caffeine, KCl, ouabain, and ATP.
    Yu JZ; Quamme GA; McNeill JH
    Diabetes Res Clin Pract; 1995 Oct; 30(1):9-20. PubMed ID: 8745201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responses of heart function and intracellular free Ca2+ to phosphatidic acid in chronic diabetes.
    Xu YJ; Botsford MW; Panagia V; Dhalla NS
    Can J Cardiol; 1996 Oct; 12(10):1092-8. PubMed ID: 9191503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diltiazem inhibition of sodium-induced calcium release. Effects on energy metabolism of heart mitochondria.
    Matlib MA; McFarland KL
    Am J Hypertens; 1991 Jul; 4(7 Pt 2):435S-441S. PubMed ID: 1910637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation by pH0 and intracellular Ca2+ of Na(+)-H+ exchange in diabetic rat isolated ventricular myocytes.
    Le Prigent K; Lagadic-Gossmann D; Feuvray D
    Circ Res; 1997 Feb; 80(2):253-60. PubMed ID: 9012747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sodium-dependent calcium release from vascular smooth muscle mitochondria.
    Tokunaga H; Hollenberg NK; Graves SW
    Hypertens Res; 2000 Jan; 23(1):39-45. PubMed ID: 10737134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of trimetazidine on the calcium transport and oxidative phosphorylation of isolated rat heart mitochondria.
    Guarnieri C; Finelli C; Zini M; Muscari C
    Basic Res Cardiol; 1997 Apr; 92(2):90-5. PubMed ID: 9166988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro and in vivo effects of R023-6152 on heart mitochondrial calcium and energy metabolism.
    Medh JD; Rex KA; Benedict CR; Sordahl LA
    J Cardiovasc Pharmacol; 1991 Oct; 18(4):473-7. PubMed ID: 1724522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of Na+-H+ exchanger protects diabetic and non-diabetic hearts from ischemic injury: insight into altered susceptibility of diabetic hearts to ischemic injury.
    Ramasamy R; Schaefer S
    J Mol Cell Cardiol; 1999 Apr; 31(4):785-97. PubMed ID: 10329206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.