These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 11396399)

  • 1. Interconverting the matrix and principal meridional representations of dioptric power in general including powers with nonorthogonal and complex principal meridians.
    Harris WF
    Ophthalmic Physiol Opt; 2001 May; 21(3):247-52. PubMed ID: 11396399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interconverting the matrix and principal-meridional representations of dioptric power and reduced vergence.
    Harris WF
    Ophthalmic Physiol Opt; 2000 Nov; 20(6):494-500. PubMed ID: 11185886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of statistics calculated from the coordinates of the power matrix to those of principal meridional representation of power.
    Abelman H; Abelman S
    Ophthalmic Physiol Opt; 2007 May; 27(3):303-10. PubMed ID: 17470244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A unified paraxial approach to astigmatic optics.
    Harris WF
    Optom Vis Sci; 1999 Jul; 76(7):480-99. PubMed ID: 10445640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dioptric power: its nature and its representation in three- and four-dimensional space.
    Harris WF
    Optom Vis Sci; 1997 Jun; 74(6):349-66. PubMed ID: 9255813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Converting principal meridional representation of power to the coordinates of the power matrix using the matrix similarity transform.
    Abelman H
    Ophthalmic Physiol Opt; 2006 Jul; 26(4):426-30. PubMed ID: 16792743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Equivalent dioptric power asymmetry relations for thick astigmatic systems.
    Keating MP
    Optom Vis Sci; 1997 Jun; 74(6):388-92. PubMed ID: 9255817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elements of the dioptric power matrix and the concept of torsional power: a reinterpretation.
    Harris WF
    Optom Vis Sci; 1990 Jan; 67(1):36-7. PubMed ID: 2308750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meridional profiles of variance-covariance of symmetric dioptric power: classes of variation that are uniform across the meridians of the eye.
    Harris WF
    Optom Vis Sci; 1997 Jun; 74(6):397-413. PubMed ID: 9255819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tolerance and nature of residual refraction in symmetric power space as principal lens powers and meridians change.
    Abelman H; Abelman S
    Comput Math Methods Med; 2014; 2014():492383. PubMed ID: 25478004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation and least-squares estimation of surface curvature and dioptric power from meridional measurements.
    Harris WF
    Ophthalmic Physiol Opt; 1992 Jan; 12(1):58-64. PubMed ID: 1584618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relation between meridional power and the dioptric power matrix.
    Harris WF
    Optom Vis Sci; 1992 Feb; 69(2):159-61. PubMed ID: 1584555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Power vectors versus power matrices, and the mathematical nature of dioptric power.
    Harris WF
    Optom Vis Sci; 2007 Nov; 84(11):1060-3. PubMed ID: 18043426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Representation of dioptric power in Euclidean 3-space.
    Harris WF
    Ophthalmic Physiol Opt; 1991 Apr; 11(2):130-6. PubMed ID: 2062537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Meridional profiles of variance-covariance of dioptric power. Part 1. The basic theory.
    Harris WF
    Ophthalmic Physiol Opt; 1992 Oct; 12(4):467-70. PubMed ID: 1293535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blurred imagery and the cylinder sine-squared law.
    Keating MP; Carroll JP
    Am J Optom Physiol Opt; 1976 Feb; 53(2):66-9. PubMed ID: 937476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetric dioptric power matrices and corresponding thick lenses.
    Keating MP
    Optom Vis Sci; 1997 Jun; 74(6):393-6. PubMed ID: 9255818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical inference on mean dioptric power: asymmetric powers and singular covariance.
    Harris WF
    Ophthalmic Physiol Opt; 1991 Jul; 11(3):263-70. PubMed ID: 1766691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constrained least-squares estimation of surface curvature and dioptric power from meridional measurements.
    Harris WF
    Ophthalmic Physiol Opt; 1992 Jan; 12(1):65-8. PubMed ID: 1584619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct, vec and other squares, and sample variance-covariance of dioptric power.
    Harris WF
    Ophthalmic Physiol Opt; 1990 Jan; 10(1):72-80. PubMed ID: 2330218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.