These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 11396477)

  • 1. Mechanisms of cell signaling by nitric oxide and peroxynitrite: from mitochondria to MAP kinases.
    Levonen AL; Patel RP; Brookes P; Go YM; Jo H; Parthasarathy S; Anderson PG; Darley-Usmar VM
    Antioxid Redox Signal; 2001 Apr; 3(2):215-29. PubMed ID: 11396477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide and cell signaling pathways in mitochondrial-dependent apoptosis.
    Boyd CS; Cadenas E
    Biol Chem; 2002; 383(3-4):411-23. PubMed ID: 12033432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of redox signaling and poly (adenosine diphosphate-ribose) polymerase activation in vascular smooth muscle cell growth inhibition by nitric oxide and peroxynitrite.
    Huang J; Lin SC; Nadershahi A; Watts SW; Sarkar R
    J Vasc Surg; 2008 Mar; 47(3):599-607. PubMed ID: 18295111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox control of cell death.
    Ueda S; Masutani H; Nakamura H; Tanaka T; Ueno M; Yodoi J
    Antioxid Redox Signal; 2002 Jun; 4(3):405-14. PubMed ID: 12215208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for peroxynitrite as a signaling molecule in flow-dependent activation of c-Jun NH(2)-terminal kinase.
    Go YM; Patel RP; Maland MC; Park H; Beckman JS; Darley-Usmar VM; Jo H
    Am J Physiol; 1999 Oct; 277(4):H1647-53. PubMed ID: 10516206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial free radical production and cell signaling.
    Cadenas E
    Mol Aspects Med; 2004; 25(1-2):17-26. PubMed ID: 15051313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decreased mitochondrial nitric oxide synthase activity and hydrogen peroxide relate persistent tumoral proliferation to embryonic behavior.
    Galli S; Labato MI; Bal de Kier Joffé E; Carreras MC; Poderoso JJ
    Cancer Res; 2003 Oct; 63(19):6370-7. PubMed ID: 14559826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peroxynitrite: mediator of the toxic action of nitric oxide.
    Bartosz G
    Acta Biochim Pol; 1996; 43(4):645-59. PubMed ID: 9104501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypothesis: the mitochondrial NO(*) signaling pathway, and the transduction of nitrosative to oxidative cell signals: an alternative function for cytochrome C oxidase.
    Brookes P; Darley-Usmar VM
    Free Radic Biol Med; 2002 Feb; 32(4):370-4. PubMed ID: 11841927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide and peroxynitrite interactions with mitochondria.
    Radi R; Cassina A; Hodara R
    Biol Chem; 2002; 383(3-4):401-9. PubMed ID: 12033431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial nitric oxide in the signaling of cell integrated responses.
    Carreras MC; Poderoso JJ
    Am J Physiol Cell Physiol; 2007 May; 292(5):C1569-80. PubMed ID: 17496232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of nitric oxide, superoxide anion, and peroxynitrite to activation of mitochondrial apoptotic signaling in hippocampal CA3 subfield following experimental temporal lobe status epilepticus.
    Chuang YC; Chen SD; Liou CW; Lin TK; Chang WN; Chan SH; Chang AY
    Epilepsia; 2009 Apr; 50(4):731-46. PubMed ID: 19178557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role for c-Jun N-terminal kinase in beta-cell recovery from nitric oxide-mediated damage.
    Scarim AL; Nishimoto SY; Weber SM; Corbett JA
    Endocrinology; 2003 Aug; 144(8):3415-22. PubMed ID: 12865320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation-triggered c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase pathways for apoptosis in human leukaemic cells stimulated by epigallocatechin-3-gallate (EGCG): a distinct pathway from those of chemically induced and receptor-mediated apoptosis.
    Saeki K; Kobayashi N; Inazawa Y; Zhang H; Nishitoh H; Ichijo H; Saeki K; Isemura M; Yuo A
    Biochem J; 2002 Dec; 368(Pt 3):705-20. PubMed ID: 12206715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactivity of peroxynitrite and nitric oxide with LDL.
    Botti H; Trostchansky A; Batthyány C; Rubbo H
    IUBMB Life; 2005 Jun; 57(6):407-12. PubMed ID: 16012049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An epigrammatic (abridged) recounting of the myriad tales of astonishing deeds and dire consequences pertaining to nitric oxide and reactive oxygen species in mitochondria with an ancillary missive concerning the origins of apoptosis.
    Heck DE; Kagan VE; Shvedova AA; Laskin JD
    Toxicology; 2005 Mar; 208(2):259-71. PubMed ID: 15691590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Does nitric oxide stress exist?].
    Torreilles J; Guérin MC
    C R Seances Soc Biol Fil; 1995; 189(3):389-400. PubMed ID: 8521087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biology of nitric oxide signaling.
    Liaudet L; Soriano FG; Szabó C
    Crit Care Med; 2000 Apr; 28(4 Suppl):N37-52. PubMed ID: 10807315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive oxygen species as mediators of signal transduction in ischemic preconditioning.
    Otani H
    Antioxid Redox Signal; 2004 Apr; 6(2):449-69. PubMed ID: 15025947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide, cell bioenergetics and neurodegeneration.
    Moncada S; Bolaños JP
    J Neurochem; 2006 Jun; 97(6):1676-89. PubMed ID: 16805776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.