These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 11396877)

  • 1. Initial interaction of osteoblasts with the surface of a hydroxyapatite-poly(methylmethacrylate) cement.
    Dalby MJ; Di Silvio L; Harper EJ; Bonfield W
    Biomaterials; 2001 Jul; 22(13):1739-47. PubMed ID: 11396877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing hydroxyapatite incorporation into poly(methylmethacrylate) cement increases osteoblast adhesion and response.
    Dalby MJ; Di Silvio L; Harper EJ; Bonfield W
    Biomaterials; 2002 Jan; 23(2):569-76. PubMed ID: 11761177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro evaluation of a new polymethylmethacrylate cement reinforced with hydroxyapatite.
    Dalby MJ; Di Silvio L; Harper EJ; Bonfield W
    J Mater Sci Mater Med; 1999 Dec; 10(12):793-6. PubMed ID: 15347953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic effect of HA and BMP-2 mimicking peptide on the bioactivity of HA/PMMA bone cement.
    Liu Z; Tang Y; Kang T; Rao M; Li K; Wang Q; Quan C; Zhang C; Jiang Q; Shen H
    Colloids Surf B Biointerfaces; 2015 Jul; 131():39-46. PubMed ID: 25948316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive biocompatibility testing of a new PMMA-hA bone cement versus conventional PMMA cement in vitro.
    Jäger M; Wilke A
    J Biomater Sci Polym Ed; 2003; 14(11):1283-98. PubMed ID: 14768914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced osteoblast response to a polymethylmethacrylate-hydroxyapatite composite.
    Moursi AM; Winnard AV; Winnard PL; Lannutti JJ; Seghi RR
    Biomaterials; 2002 Jan; 23(1):133-44. PubMed ID: 11762831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cemented fixation with PMMA or Bis-GMA resin hydroxyapatite cement: effect of implant surface roughness.
    Walsh WR; Svehla MJ; Russell J; Saito M; Nakashima T; Gillies RM; Bruce W; Hori R
    Biomaterials; 2004 Sep; 25(20):4929-34. PubMed ID: 15109853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of modification degree of nanohydroxyapatite on biocompatibility and mechanical property of injectable poly(methyl methacrylate)-based bone cement.
    Quan C; Tang Y; Liu Z; Rao M; Zhang W; Liang P; Wu N; Zhang C; Shen H; Jiang Q
    J Biomed Mater Res B Appl Biomater; 2016 Apr; 104(3):576-84. PubMed ID: 25953071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vertebroplasty by use of a strontium-containing bioactive bone cement.
    Cheung KM; Lu WW; Luk KD; Wong CT; Chan D; Shen JX; Qiu GX; Zheng ZM; Li CH; Liu SL; Chan WK; Leong JC
    Spine (Phila Pa 1976); 2005 Sep; 30(17 Suppl):S84-91. PubMed ID: 16138071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo cancellous bone remodeling on a strontium-containing hydroxyapatite (sr-HA) bioactive cement.
    Wong CT; Lu WW; Chan WK; Cheung KM; Luk KD; Lu DS; Rabie AB; Deng LF; Leong JC
    J Biomed Mater Res A; 2004 Mar; 68(3):513-21. PubMed ID: 14762931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial strength of novel PMMA/HA/nanoclay bone cement.
    Wang CX; Tong J
    Biomed Mater Eng; 2008; 18(6):367-75. PubMed ID: 19197113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of bone and hydroxyapatite filled 4-META/MMA-TBB bone cement in in vitro and in vivo environments.
    Lee RR
    J Philipp Dent Assoc; 1996; 48(1):5-12. PubMed ID: 9462058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The characteristics of a hydroxyapatite-chitosan-PMMA bone cement.
    Kim SB; Kim YJ; Yoon TL; Park SA; Cho IH; Kim EJ; Kim IA; Shin JW
    Biomaterials; 2004 Nov; 25(26):5715-23. PubMed ID: 15147817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Square prism micropillars improve osteogenicity of poly(methyl methacrylate) surfaces.
    Hasturk O; Ermis M; Demirci U; Hasirci N; Hasirci V
    J Mater Sci Mater Med; 2018 May; 29(5):53. PubMed ID: 29721618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced osteoblast responses to poly(methyl methacrylate)/hydroxyapatite electrospun nanocomposites for bone tissue engineering.
    Xing ZC; Han SJ; Shin YS; Koo TH; Moon S; Jeong Y; Kang IK
    J Biomater Sci Polym Ed; 2013; 24(1):61-76. PubMed ID: 22289639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface characterisation of various bone cements prepared with functionalised methacrylates/bioactive ceramics in relation to HOB behaviour.
    Salih V; Mordan N; Abou Neel EA; Armitage DA; Jones FH; Knowles JC; Nazhat SN; Vargas-Coronado R; Cauich-Rodriguez JV
    Acta Biomater; 2006 Mar; 2(2):143-54. PubMed ID: 16701872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone Response to Porous Poly(methyl methacrylate) Cement Loaded with Hydroxyapatite Particles in a Rabbit Mandibular Model.
    Sa Y; Yu N; Wolke JGC; Chanchareonsook N; Goh BT; Wang Y; Yang F; Jansen JA
    Tissue Eng Part C Methods; 2017 May; 23(5):262-273. PubMed ID: 28372521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro Growth Pattern of Primary Human Osteoblasts on Calcium Phosphate- and Polymethylmethacrylate-Based Bone Cement.
    Schauwecker J; Bock M; Pohlig F; Mühlhofer H; Tübel J; von Eisenhart-Rothe R; Kirchhoff C
    Eur Surg Res; 2017; 58(5-6):216-226. PubMed ID: 28494462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioactive bone cements.
    Harper EJ
    Proc Inst Mech Eng H; 1998; 212(2):113-20. PubMed ID: 9612002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Vitro characterization of low modulus linoleic acid coated strontium-substituted hydroxyapatite containing PMMA bone cement.
    Lam WM; Pan HB; Fong MK; Cheung WS; Wong KL; Li ZY; Luk KD; Chan WK; Wong CT; Yang C; Lu WW
    J Biomed Mater Res B Appl Biomater; 2011 Jan; 96(1):76-83. PubMed ID: 21053263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.