These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 11396895)

  • 1. Formation of dextran hydrogels by crystallization.
    Stenekes RJ; Talsma H; Hennink WE
    Biomaterials; 2001 Jul; 22(13):1891-8. PubMed ID: 11396895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic synthesis of dextran-containing hydrogels.
    Ferreira L; Gil MH; Dordick JS
    Biomaterials; 2002 Oct; 23(19):3957-67. PubMed ID: 12162328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembled hydrogel nanoparticles composed of dextran and poly(ethylene glycol) macromer.
    Kim IS; Jeong YI; Kim SH
    Int J Pharm; 2000 Sep; 205(1-2):109-16. PubMed ID: 11000547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibroin hydrogels for biomedical applications: preparation, characterization and in vitro cell culture studies.
    Motta A; Migliaresi C; Faccioni F; Torricelli P; Fini M; Giardino R
    J Biomater Sci Polym Ed; 2004; 15(7):851-64. PubMed ID: 15318796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of self-assembled microspheres and their potential for drug delivery.
    Mellors R; Benzeval I; Eisenthal R; Hubble J
    Pharm Dev Technol; 2010; 15(1):105-11. PubMed ID: 19545194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macroscopic hydrogels by self-assembly of oligolactate-grafted dextran microspheres.
    Van Tomme SR; Mens A; van Nostrum CF; Hennink WE
    Biomacromolecules; 2008 Jan; 9(1):158-65. PubMed ID: 18081253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid lipid nanoparticles incorporated in dextran hydrogels: a new drug delivery system for oral formulations.
    Casadei MA; Cerreto F; Cesa S; Giannuzzo M; Feeney M; Marianecci C; Paolicelli P
    Int J Pharm; 2006 Nov; 325(1-2):140-6. PubMed ID: 16846705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled release of EGF and bFGF from dextran hydrogels in vitro and in vivo.
    Dogan AK; Gümüşderelioglu M; Aksöz E
    J Biomed Mater Res B Appl Biomater; 2005 Jul; 74(1):504-10. PubMed ID: 15909296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics.
    Chen FM; Zhao YM; Sun HH; Jin T; Wang QT; Zhou W; Wu ZF; Jin Y
    J Control Release; 2007 Mar; 118(1):65-77. PubMed ID: 17250921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of novel semi-interpenetrating polymer network hydrogel microspheres of chitosan and hydroxypropyl cellulose for controlled release of chlorothiazide.
    Rokhade AP; Kulkarni PV; Mallikarjuna NN; Aminabhavi TM
    J Microencapsul; 2009 Feb; 26(1):27-36. PubMed ID: 18608812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic Investigation of the Formation and Disruption of Hydrogen Bonds in Pharmaceutical Semicrystalline Dispersions.
    Van Duong T; Reekmans G; Venkatesham A; Van Aerschot A; Adriaensens P; Van Humbeeck J; Van den Mooter G
    Mol Pharm; 2017 May; 14(5):1726-1741. PubMed ID: 28363028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insolubilization of water-soluble dextran.
    Hirata Y; Aoki M; Kobatake H; Yamamoto H
    Biomaterials; 1999 Feb; 20(4):303-7. PubMed ID: 10048401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro degradation behavior of microspheres based on cross-linked dextran.
    Vlugt-Wensink KD; Jiang X; Schotman G; Kruijtzer G; Vredenberg A; Chung JT; Zhang Z; Versluis C; Ramos D; Verrijk R; Jiskoot W; Crommelin DJ; Hennink WE
    Biomacromolecules; 2006 Nov; 7(11):2983-90. PubMed ID: 17096522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel pH- and ionic-strength-sensitive carboxy methyl dextran hydrogel.
    Zhang R; Tang M; Bowyer A; Eisenthal R; Hubble J
    Biomaterials; 2005 Aug; 26(22):4677-83. PubMed ID: 15722138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres.
    Mao S; Xu J; Cai C; Germershaus O; Schaper A; Kissel T
    Int J Pharm; 2007 Apr; 334(1-2):137-48. PubMed ID: 17196348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Solid Dispersion of Itraconazole Prepared by Solubilization in Concentrated Aqueous Solutions of Weak Organic Acids and Drying.
    Parikh T; Sandhu HK; Talele TT; Serajuddin AT
    Pharm Res; 2016 Jun; 33(6):1456-71. PubMed ID: 26951566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equilibrium water content of microspheres based on cross-linked dextran.
    Stenekes RJ; Hennink WE
    Int J Pharm; 1999 Nov; 189(2):131-5. PubMed ID: 10536241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bile salts adsorption on dextran-based hydrogels.
    Stanciu MC; Nichifor M; Ailiesei GL
    Int J Biol Macromol; 2021 Nov; 190():270-283. PubMed ID: 34481856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of in situ granulation and temperature quenching on crystal habit and micromeritic properties of ibuprofen-cationic dextran conjugate crystanules.
    Abioye AO; Kola-Mustapha A; Ruparelia K
    Int J Pharm; 2014 Feb; 462(1-2):83-102. PubMed ID: 24378327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of aqueous PEG/dextran phase separation for the preparation of dextran microspheres.
    Stenekes RJ; Franssen O; van Bommel EM; Crommelin DJ; Hennink WE
    Int J Pharm; 1999 Jun; 183(1):29-32. PubMed ID: 10361149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.