BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 11396922)

  • 1. Expression and degradation of the cystic fibrosis transmembrane conductance regulator in Saccharomyces cerevisiae.
    Kiser GL; Gentzsch M; Kloser AK; Balzi E; Wolf DH; Goffeau A; Riordan JR
    Arch Biochem Biophys; 2001 Jun; 390(2):195-205. PubMed ID: 11396922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanism underlying cystic fibrosis transmembrane conductance regulator transport from the endoplasmic reticulum to the proteasome includes Sec61beta and a cytosolic, deglycosylated intermediary.
    Bebök Z; Mazzochi C; King SA; Hong JS; Sorscher EJ
    J Biol Chem; 1998 Nov; 273(45):29873-8. PubMed ID: 9792704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Traffic-independent function of the Sar1p/COPII machinery in proteasomal sorting of the cystic fibrosis transmembrane conductance regulator.
    Fu L; Sztul E
    J Cell Biol; 2003 Jan; 160(2):157-63. PubMed ID: 12538638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hsp70 molecular chaperone facilitates endoplasmic reticulum-associated protein degradation of cystic fibrosis transmembrane conductance regulator in yeast.
    Zhang Y; Nijbroek G; Sullivan ML; McCracken AA; Watkins SC; Michaelis S; Brodsky JL
    Mol Biol Cell; 2001 May; 12(5):1303-14. PubMed ID: 11359923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sec61p-independent degradation of the tail-anchored ER membrane protein Ubc6p.
    Walter J; Urban J; Volkwein C; Sommer T
    EMBO J; 2001 Jun; 20(12):3124-31. PubMed ID: 11406589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic interactions of Hrd3p and Der3p/Hrd1p with Sec61p suggest a retro-translocation complex mediating protein transport for ER degradation.
    Plemper RK; Bordallo J; Deak PM; Taxis C; Hitt R; Wolf DH
    J Cell Sci; 1999 Nov; 112 ( Pt 22)():4123-34. PubMed ID: 10547371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defects in processing and trafficking of the cystic fibrosis transmembrane conductance regulator.
    Skach WR
    Kidney Int; 2000 Mar; 57(3):825-31. PubMed ID: 10720935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A principal role for the proteasome in endoplasmic reticulum-associated degradation of misfolded intracellular cystic fibrosis transmembrane conductance regulator.
    Gelman MS; Kannegaard ES; Kopito RR
    J Biol Chem; 2002 Apr; 277(14):11709-14. PubMed ID: 11812794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-conventional trafficking of the cystic fibrosis transmembrane conductance regulator through the early secretory pathway.
    Yoo JS; Moyer BD; Bannykh S; Yoo HM; Riordan JR; Balch WE
    J Biol Chem; 2002 Mar; 277(13):11401-9. PubMed ID: 11799116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of CFTR by the ubiquitin-proteasome pathway.
    Ward CL; Omura S; Kopito RR
    Cell; 1995 Oct; 83(1):121-7. PubMed ID: 7553863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. COOH-terminal truncations promote proteasome-dependent degradation of mature cystic fibrosis transmembrane conductance regulator from post-Golgi compartments.
    Benharouga M; Haardt M; Kartner N; Lukacs GL
    J Cell Biol; 2001 May; 153(5):957-70. PubMed ID: 11381082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ricin A chain utilises the endoplasmic reticulum-associated protein degradation pathway to enter the cytosol of yeast.
    Simpson JC; Roberts LM; Römisch K; Davey J; Wolf DH; Lord JM
    FEBS Lett; 1999 Oct; 459(1):80-4. PubMed ID: 10508921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ubiquitin-dependent 26S proteasomal pathway: a role in the degradation of native human liver CYP3A4 expressed in Saccharomyces cerevisiae?
    Murray BP; Correia MA
    Arch Biochem Biophys; 2001 Sep; 393(1):106-16. PubMed ID: 11516167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 'ER degradation' of a mutant yeast plasma membrane protein by the ubiquitin-proteasome pathway.
    Galan JM; Cantegrit B; Garnier C; Namy O; Haguenauer-Tsapis R
    FASEB J; 1998 Mar; 12(3):315-23. PubMed ID: 9506475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ER-associated complexes (ERACs) containing aggregated cystic fibrosis transmembrane conductance regulator (CFTR) are degraded by autophagy.
    Fu L; Sztul E
    Eur J Cell Biol; 2009 Apr; 88(4):215-26. PubMed ID: 19131141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The protein translocation channel mediates glycopeptide export across the endoplasmic reticulum membrane.
    Gillece P; Pilon M; Römisch K
    Proc Natl Acad Sci U S A; 2000 Apr; 97(9):4609-14. PubMed ID: 10758167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation signals recognized by the Ubc6p-Ubc7p ubiquitin-conjugating enzyme pair.
    Gilon T; Chomsky O; Kulka RG
    Mol Cell Biol; 2000 Oct; 20(19):7214-9. PubMed ID: 10982838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of cystic fibrosis transmembrane conductance regulator membrane trafficking: not just from the endoplasmic reticulum to the Golgi.
    Farinha CM; Matos P; Amaral MD
    FEBS J; 2013 Sep; 280(18):4396-406. PubMed ID: 23773658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An energy-dependent maturation step is required for release of the cystic fibrosis transmembrane conductance regulator from early endoplasmic reticulum biosynthetic machinery.
    Oberdorf J; Pitonzo D; Skach WR
    J Biol Chem; 2005 Nov; 280(46):38193-202. PubMed ID: 16166089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutational disruption of plasma membrane trafficking of Saccharomyces cerevisiae Yor1p, a homologue of mammalian multidrug resistance protein.
    Katzmann DJ; Epping EA; Moye-Rowley WS
    Mol Cell Biol; 1999 Apr; 19(4):2998-3009. PubMed ID: 10082567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.