BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 11397091)

  • 1. In-vitro selection of highly stabilized protein variants with optimized surface.
    Martin A; Sieber V; Schmid FX
    J Mol Biol; 2001 Jun; 309(3):717-26. PubMed ID: 11397091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization of the cold shock protein CspB from Bacillus subtilis by evolutionary optimization of Coulombic interactions.
    Wunderlich M; Martin A; Schmid FX
    J Mol Biol; 2005 Apr; 347(5):1063-76. PubMed ID: 15784264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures of mutant forms of the Bacillus caldolyticus cold shock protein differing in thermal stability.
    Delbrück H; Mueller U; Perl D; Schmid FX; Heinemann U
    J Mol Biol; 2001 Oct; 313(2):359-69. PubMed ID: 11800562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal stability and atomic-resolution crystal structure of the Bacillus caldolyticus cold shock protein.
    Mueller U; Perl D; Schmid FX; Heinemann U
    J Mol Biol; 2000 Apr; 297(4):975-88. PubMed ID: 10736231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrostatic stabilization of a thermophilic cold shock protein.
    Perl D; Schmid FX
    J Mol Biol; 2001 Oct; 313(2):343-57. PubMed ID: 11800561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased folding stability of TEM-1 beta-lactamase by in vitro selection.
    Kather I; Jakob RP; Dobbek H; Schmid FX
    J Mol Biol; 2008 Oct; 383(1):238-51. PubMed ID: 18706424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimized variants of the cold shock protein from in vitro selection: structural basis of their high thermostability.
    Max KE; Wunderlich M; Roske Y; Schmid FX; Heinemann U
    J Mol Biol; 2007 Jun; 369(4):1087-97. PubMed ID: 17481655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro evolution of a hyperstable Gbeta1 variant.
    Wunderlich M; Schmid FX
    J Mol Biol; 2006 Oct; 363(2):545-57. PubMed ID: 16978647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary protein stabilization in comparison with computational design.
    Wunderlich M; Martin A; Staab CA; Schmid FX
    J Mol Biol; 2005 Sep; 351(5):1160-8. PubMed ID: 16051264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A stable disulfide-free gene-3-protein of phage fd generated by in vitro evolution.
    Kather I; Bippes CA; Schmid FX
    J Mol Biol; 2005 Dec; 354(3):666-78. PubMed ID: 16259997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two exposed amino acid residues confer thermostability on a cold shock protein.
    Perl D; Mueller U; Heinemann U; Schmid FX
    Nat Struct Biol; 2000 May; 7(5):380-3. PubMed ID: 10802734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the charge-charge interactions in defining stability and halophilicity of the CspB proteins.
    Gribenko AV; Makhatadze GI
    J Mol Biol; 2007 Feb; 366(3):842-56. PubMed ID: 17188709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of ionic strength on protein stability: the cold shock protein family.
    Dominy BN; Perl D; Schmid FX; Brooks CL
    J Mol Biol; 2002 May; 319(2):541-54. PubMed ID: 12051927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origins of the high stability of an in vitro-selected cold-shock protein.
    Martin A; Kather I; Schmid FX
    J Mol Biol; 2002 May; 318(5):1341-9. PubMed ID: 12083522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic contributions to the stability of a thermophilic cold shock protein.
    Zhou HX; Dong F
    Biophys J; 2003 Apr; 84(4):2216-22. PubMed ID: 12668430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of thermostabilization in a designed cold shock protein with optimized surface electrostatic interactions.
    Makhatadze GI; Loladze VV; Gribenko AV; Lopez MM
    J Mol Biol; 2004 Feb; 336(4):929-42. PubMed ID: 15095870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution X-ray structure of the DNA-binding protein HU from the hyper-thermophilic Thermotoga maritima and the determinants of its thermostability.
    Christodoulou E; Rypniewski WR; Vorgias CR
    Extremophiles; 2003 Apr; 7(2):111-22. PubMed ID: 12664263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of stabilized proteins by combinatorial consensus mutagenesis.
    Amin N; Liu AD; Ramer S; Aehle W; Meijer D; Metin M; Wong S; Gualfetti P; Schellenberger V
    Protein Eng Des Sel; 2004 Nov; 17(11):787-93. PubMed ID: 15574484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selecting proteins with improved stability by a phage-based method.
    Sieber V; Plückthun A; Schmid FX
    Nat Biotechnol; 1998 Oct; 16(10):955-60. PubMed ID: 9788353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An electrostatic basis for the stability of thermophilic proteins.
    Dominy BN; Minoux H; Brooks CL
    Proteins; 2004 Oct; 57(1):128-41. PubMed ID: 15326599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.